CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 260-269.DOI: 10.11949/j.issn.0438-1157.20151657
Previous Articles Next Articles
WANG Luyuan, CHENG Xingxing, ZHANG Xingyu, MA Chunyuan
Received:
2015-11-03
Revised:
2015-11-18
Online:
2016-08-31
Published:
2016-08-31
Supported by:
supported by the National Natural Science Foundation of China (51406104) and the Fundamental Research Funds of Shandong University (2014HW024).
王鲁元, 程星星, 张兴宇, 马春元
通讯作者:
程星星,xcheng@sdu.edu.cn
基金资助:
国家自然科学基金项目(51406104);山东大学人才引进专项(2014HW024).
CLC Number:
WANG Luyuan, CHENG Xingxing, ZHANG Xingyu, MA Chunyuan. Mechanism of nitric oxides reduction by carbon monoxide over cobalt oxides supported by CeO2 nanorod[J]. CIESC Journal, 2016, 67(S1): 260-269.
王鲁元, 程星星, 张兴宇, 马春元. CeO2纳米棒负载Co催化CO脱除NOx的机理[J]. 化工学报, 2016, 67(S1): 260-269.
[1] | SKALSKA K, MILLER J S, LEDAKOWICZ S. Trends in NOx abatement:a review[J]. Science of the Total Environment, 2010, 408(19):3976-3989. |
[2] | 毛健全, 煤的清洁燃烧[M]. 北京:科学出版社, 1998. MAO J Q. Coal Clean Combustion[M]. Beijing:Science Press, 1998. |
[3] | TAYLOR K C. Nitric oxide catalysis in automotive exhaust systems[J]. Catalysis Reviews-Science and Engineering, 1993, 35(4):457-481. |
[4] | CHENG X, BI X T. Modeling NOx adsorption onto Fe/ZSM-5 catalysts in a fixed bed reactor[J]. International Journal of Chemical Reactor Engineering, 2013, 11(1):19-30. |
[5] | IWAMOTO M, YAHIRO H, TANDA K, et al. Removal of nitrogen monoxide through a novel catalytic process(Ⅰ):Decomposition on excessively copper-ion-exchanged ZSM-5 zeolites[J]. The Journal of Physical Chemistry, 1991, 95(9):3727-3730. |
[6] | MRAD R, AISSAT A, COUSIN R, et al. Catalysts for NOx selective catalytic reduction by hydrocarbons (HC-SCR)[J]. Applied Catalysis A:General, 2015, 504:542-548. |
[7] | TABATA T, OHTSUKA H, SABATINO L M F, et al. Selective catalytic reduction of NOx by propane on Co-loaded zeolites[J]. Microporous and Mesoporous Materials, 1998, 21(4):517-524. |
[8] | 魏伟, 史庆南, 魏坤霞.汽车尾气三元净化催化剂的研究新进展[J].贵金属, 2002, 23(2):61-65. WEI W, SHI Q N, WEI K X. New development of three-way catalysts for purifying automotive exhaust gas[J]. Precious Metals, 2002, 23(2):61-65. |
[9] | ZAANEN J, SAWATZKY G A, ALLEN J W. Band gaps and electronic structure of transition-metal compounds[J]. Physical Review Letters, 1985, 55(4):418-421. |
[10] | ZENER C. Interaction between the d-shells in the transition metals(Ⅱ):Ferromagnetic compounds of manganese with perovskite structure[J]. Physical Review, 1951, 82(3):403-405. |
[11] | CHENG X, ZHU A, ZHANG Y, et al. A combined DRIFTS and MS study on reaction mechanism of NO reduction by CO over NiO/CeO2 catalyst[J]. Applied Catalysis B:Environmental, 2009, 90(3):395-404. |
[12] | MILLER J T, GLUSKER E, PEDDI R, et al. The role of acid sites in cobalt zeolite catalysts for selective catalytic reduction of NOx[J]. Catalysis Letters, 1998, 51(1/2):15-22. |
[13] | KACIMI M, ZIYAD M, LIOTTA L F. Cu on amorphous AlPO4:preparation, characterization and catalytic activity in NO reduction by CO in presence of oxygen[J]. Catalysis Today, 2015, 241:151-158. |
[14] | MIZUNO N, TANAKA M, MISONO M. Reaction between carbon monoxide and nitrogen monoxide over perovskite-type mixed oxides[J]. Journal of the Chemical Society, Faraday Transactions, 1992, 88(1):91-95. |
[15] | SIMONOT L, MAIRE G. A comparative study of LaCoO3, Co3O4 and a mix of LaCoO3-Co3O4(Ⅱ):Catalytic properties for the CO+NO reaction[J]. Applied Catalysis B:Environmental, 1997, 11(2):181-191. |
[16] | LI Y, WEI Z, GAO F, et al. Effects of CeO2 support facets on VOx/CeO2 catalysts in oxidative dehydrogenation of methanol[J]. Journal of Catalysis, 2014, 315:15-24. |
[17] | BAIDYA T, BERA P, MUKRI B D, et al. DRIFTS studies on CO and NO adsorption and NO+CO reaction over Pd2+-substituted CeO2 and Ce0.75Sn0.25O2 catalysts[J]. Journal of Catalysis, 2013, 303:117-129. |
[18] | YAN L, YU R, CHEN J, et al. Template-free hydro-thermal synthesis of CeO2 nano-octahedrons and nanorods:investigation of the morphology evolution[J]. Crystal Growth and Design, 2008, 8(5):1474-1477. |
[19] | LIANG X, WANG X, ZHUANG Y, et al. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect[J]. Journal of the American Chemical Society, 2008, 130(9):2736-2737. |
[20] | CARRETTIN S, CONCEPCIóN P, CORMA A, et al. Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude[J]. Angewandte Chemie International Edition, 2004, 43(19):2538-2540. |
[21] | MADIER Y, DESCORME C, LE GOVIC A M, et al. Oxygen mobility in CeO2 and CexZr(1-x)O2 compounds:study by CO transient oxidation and 18O/16O isotopic exchange[J]. The Journal of Physical Chemistry B, 1999, 103(50):10999-11006. |
[22] | FORNASIERO P, RAO G R, KAŠPAR J. Reduction of NO by CO over Rh/CeO2-ZrO2 catalysts-evidence for a support-promoted catalytic activity[J]. Journal of Catalysis, 1998, 175(2):269-279. |
[23] | MA?ECKA M, K?PI A?G SKI L, M?CZKA M. Structure and phase composition of nanocrystalline Ce1-xLuxO2-y[J]. Journal of Solid State Chemistry, 2008, 181(9):2306-2312. |
[24] | WU B, ZINKEVICH M, ALDINGER F, et al. Ab initio study on structure and phase transition of A-and B-type rare-earth sesquioxides Ln2O3 (Ln=La-Lu, Y, and Sc) based on density function theory[J]. Journal of Solid State Chemistry, 2007, 180(11):3280-3287. |
[25] | CHEN Y, WANG J, YAN Z, et al. Promoting effect of Nd on the reduction of NO with NH3 over CeO2 supported by activated semi-coke:an in situ DRIFTS study[J]. Catalysis Science & Technology, 2015, 5(4):2251-2259. |
[26] | MAI H X, SUN L D, ZHANG Y W, et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. The Journal of Physical Chemistry B, 2005, 109(51):24380-24385. |
[27] | ZHOU K, WANG X, SUN X, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. Journal of Catalysis, 2005, 229(1):206-212. |
[28] | 冯良荣, 吕绍洁, 邱发礼. 过渡元素掺杂对纳米TiO2光催化剂性能的影响[J]. 化学学报, 2002, 60(3):463-467. FENG L R, LÜ S J, QIU F L. Influence of transition elements dopant on the photocatalytic activities of nanometer TiO2[J]. Acta Chimica Sinica, 2002, 60(3):463-467. |
[29] | 侯梅芳, 李芳柏, 李瑞丰, 等. 钕掺杂提高TiO2光催化活性的机制[J]. 中国稀土学报, 2004, 22(1):75-80. HOU M F, LI F B, LI R F, et al. Enhancement of photo-catalytic properties and activity of Nd3+-doped TiO2 powders[J]. Journal of the Chinese Rare Earth Society, 2004, 22(1):75-80. |
[30] | PAN Z J. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping[J]. Acta Physica Sinica, 2005, 54(11):5308-5313. |
[31] | PAN Z J. First-principles study of electronic structure for CoSi[J]. Acta Physica Sinica, 2005, 54(1):328-332. |
[32] | KANG M, PARK E D, KIM J M, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied catalysis A:General, 2007, 327(2):261-269. |
[33] | WANG J, YAN Z, LIU L, et al. In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke[J]. Applied Surface Science, 2014, 313(13):660-669. |
[34] | ARICO A S, SHUKLA A K, KIM H, et al. An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen[J]. Applied Surface Science, 2001, 172(1):33-40. |
[35] | BêCHE E, CHARVIN P, PERARNAU D, et al. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)[J]. Surface and Interface Analysis, 2008, 40(3/4):264-267. |
[36] | 何余生, 李忠, 奚红霞,等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20(4):376-384. HE Y S, LI Z, XI H X, et al. Research progress of gas-solid adsorption isotherms[J]. Ion Exchange and Adsorption, 2004, 20(4):376-384. |
[37] | 近藤精一. 吸附科学[M]. 李希国, 译. 第2版. 北京:化学工业出版社, 2006:32-55. SEⅡCHI K. Adsorption Science[M]. LI X G, trans. 2nd ed. Beijing:Chemical Industry Press, 2006:32-55. |
[38] | MEHANDJIEV D, KHRISTOVA M, BEKYAROVA E. Conversion of NO on Co-impregnated active carbon catalysts[J]. Carbon, 1996, 34(6):757-762. |
[39] | KANG M, SONG M W, LEE C H. Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts[J]. Applied Catalysis A:General, 2003, 251(1):143-156. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Chongda DUAN, Xiaowei YAO, Jiahua ZHU, Jing SUN, Nan HU, Guangyue LI. Effects of environmental factors on calcium carbonate precipitation induced by Klebsiella aerogenes [J]. CIESC Journal, 2023, 74(8): 3543-3553. |
[3] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[4] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[5] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[6] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[7] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[8] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[9] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[10] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[11] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[12] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[13] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[14] | Tanjie ZHA, Han YANG, Hejie QIN, Xiaohong GUAN. The construction of biomimetic materials and their research progress in the field of aquatic environmental chemistry [J]. CIESC Journal, 2023, 74(2): 585-598. |
[15] | Xun JIAO, Cheng TONG, Cunpu LI, Zidong WEI. Kinetic regulation strategies in lithium-sulfur batteries [J]. CIESC Journal, 2023, 74(1): 170-191. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 906
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 351
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||