CIESC Journal ›› 2017, Vol. 68 ›› Issue (3): 976-983.DOI: 10.11949/j.issn.0438-1157.20161533
Previous Articles Next Articles
ZHENG Rongjian1,2, PAN Feng1
Received:
2016-10-31
Revised:
2016-11-07
Online:
2017-03-05
Published:
2017-03-05
Contact:
10.11949/j.issn.0438-1157.20161533
Supported by:
supported by the National Natural Science Foundation of China (61273131),the Graduate Innovation of Jiangsu Province (CXZZ12_0741) and the Fundamental Research Funds for Central Universities (JUDCF12034).
郑蓉建1,2, 潘丰1
通讯作者:
郑蓉建,rjmzheng@163.com
基金资助:
国家自然科学基金项目(61273131);江苏省普通高校研究生科研创新计划项目(CXZZ12_0741);中央高校基本科研业务费专项资金(JUDCF12034)。
CLC Number:
ZHENG Rongjian, PAN Feng. Prediction of product concentration in glutamate fermentation process using partial least squares and least square support vector machine[J]. CIESC Journal, 2017, 68(3): 976-983.
郑蓉建, 潘丰. 基于PLS-LSSVM的谷氨酸发酵产物浓度预测建模[J]. 化工学报, 2017, 68(3): 976-983.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20161533
[1] | KHAN N S, MISHRA I M, SINGH R P, et al. Modeling the growth of corynebacterium glutamicum under product inhibition in L-glutamic acid fermentation[J]. Biochemical Engineering Journal, 2005, 25(2):173-178. |
[2] | CAO Y, MPOFU E, SHI Z P. A novel metabolic model incorporating directed signal flow diagram with enzymatic activities data for evaluating glutamate yield in glutamate fermentation[J]. Biochemical Engineering Journal, 2013, 77(8):136-146. |
[3] | VELOSO A C A, ROCHA I, FERREIRA E C. Monitoring of fed-batch E. coli fermentations with software sensors[J]. Bioprocess Biosyst. Eng., 2009, 32:381-388. |
[4] | 贺彦林, 王晓, 朱群雄. 基于主成分分析改进的极限学习机方法的精对苯二甲酸醋酸含量软测量[J]. 控制理论与应用, 2015, 32(1):80-85. HE Y L, WANG X, ZHU Q X. Modeling of acetic acid content in purified terephthalic acid solvent column using principal component analysis based improved extreme learning machine[J]. Control Theory & Applications, 2015, 32(1):80-85. |
[5] | KANEKO H, FUNATSU K. Ensemble locally weighted partial least squares as a just-in-time modeling method[J]. AIChE Journal, 2016, 62(3):717-725. |
[6] | 袁小锋, 葛志强, 宋执环. 基于时间差分和局部加权偏最小二乘算法的过程自适应软测量建模[J].化工学报, 2016, 67(3):724-728. YUAN X F, GE Z Q, SONG Z H. Adaptive soft sensor based on time difference model and locally weighted partial least squares regression[J]. CIESC Journal, 2016, 67(3):724-728. |
[7] | 黄永红, 孙丽娜, 孙玉坤, 等. 海洋蛋白酶发酵过程生物参数的软测量建模[J]. 信息与控制, 2013, 42(4):506-510. HUANG Y H, SUN L N, SUN Y K, et al. Soft sensor modeling based on biological variables of marine protease fermentation process[J]. Information and Control, 2013, 42(4):506-510. |
[8] | WANG T, SUN J W, ZHANG W D, et al. Prediction of product formation in 2-keto-l-gulonic acid fermentation through Bayesian combination of multiple neural networks[J]. Process Biochemistry, 2014, 49:188-194. |
[9] | 陈进东, 潘丰. 基于在线支持向量回归的非线性模型预测控制方法[J]. 控制与决策, 2014, 29(3):460-464. CHEN J D, PAN F. Online support vector regression-based nonlinear model predictive control[J]. Control and Decision, 2014, 29(3):460-464. |
[10] | LIU G H, ZHOU D W, XU H X, et al. Model optimization of SVM for a fermentation soft sensor[J]. Expert Systems with Applications, 2010, 37(4):2708-2713. |
[11] | ACUNA G, RAMIREZ C, CURILEM M. Software sensors for biomass concentration in a SSC process using artificial neural networks and support vector machine[J]. Bioprocess Biosyst. Eng., 2014, 37(1):27-36. |
[12] | SUYKENS J A K, VANDEWALLE J. Least squares support machine classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300. |
[13] | WANG X F, CHEN J D, LIU C B, et al. Hybrid modeling of penicillin fermentation process based on least square support vector machine[J]. Chemical Engineering Research and Design, 2010, 88:415-420. |
[14] | NIU D P, JIA M X, WANG F L, et al. Optimization of Nosiheptide fed-batch fermentation process based on hybrid model[J]. Industrial & Engineering Chemistry Research, 2013, 52:3373-3380. |
[15] | 熊伟丽, 姚乐, 徐保国. 混沌最小二乘支持向量机及其在发酵过程建模中的应用[J]. 化工学报, 2013, 64(12):4585-4591. XIONG W L, YAO L, XU B G. Chaos least squares support vector machine and its application on fermentation process modeling[J]. CIESC Journal, 2013, 64(12):4585-4591. |
[16] | 陶劲松, 杨亚帆, 李远华. 基于PLS和SVM的纸张抗张强度建模比较[J].华南理工大学学报(自然科学版), 2014, 42(7):132-137. TAO J S, YANG Y F, LI Y H. Comparison of paper tensile strength prediction models based on PLS and SVM methods[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(7):132-137. |
[17] | TAE C P, TAE Y K, YEONG K Y. Prediction of the melt flow index using partial least squares and support vector regression in high-density polyethylene (HDPE) process[J]. Korean J. Chem. Eng., 2010, 27(6):1662-1668. |
[18] | FACCO P, DOPLICHER F, BEZZO F, et al. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process[J]. J. Process Control, 2009, 19(3):520-529. |
[19] | KANEKO H, ARAKAWA M, FUNATSU K. Development of a new soft sensor method using independent component analysis and partial least squares[J]. AIChE J., 2009, 55(1):87-98. |
[20] | 汤伟, 于东伟, 张怡真. 基于递推PLS的置换蒸煮终点软测量建模研究[J]. 中国造纸学报, 2015, 30(3):47-50. TANG W, YU D W, ZHANG Y Z. Research on cooking end point modeling based on recursive PLS for displacement cooking[J]. Transactions of China Pulp and Paper, 2015, 30(3):47-50. |
[21] | FUJIWARA K, SAWADA H, KANO M. Input variable selection for PLS modeling using nearest correlation spectral clustering[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 118:109-119. |
[22] | 赵朋程, 刘彬, 高伟, 等. 用于水泥熟料fCaO预测的多核最小二乘支持向量机模型[J]. 化工学报, 2016, 67(6):2480-2487. ZHAO P C, LIU B, GAO W, et al. Multiple kernel least square support vector machine model for prediction of cement clinker lime content[J]. CIESC Journal, 2016, 67(6):2480-2487. |
[23] | XIAO J, SHI Z P, GAO P, et al. On-line optimization of glutamate production based on balanced metabolic control by RQ[J]. Bioprocess Biosyst. Eng., 2006, 29(2):109-117. |
[24] | 董传亮. 谷氨酸发酵过程的故障诊断研究[D]. 无锡:江南大学, 2008. DONG C L. Study on fault diagnosis for glutamic acid fermentation process[D]. Wuxi:Jiangnan Univercity, 2008. |
[25] | ZHENG X W, SUN T, SUN Z Y, et al. Time-dependent kinetic models for glutamic acid fermentation[J]. Enzyme and Microbial Technology, 1998, 22:205-209. |
[26] | 蔡煜东, 陈常庆.用遗传算法辨识发酵动力学模型参数[J].化工学报, 1995, 46(3):338-342. CAI Y D, CHEN C Q. Recognition of parameters in fermentation dynamics model by genetic algorithm[J]. Journal of Chemical Industry and Engineering(China), 1995, 46(3):338-342. |
[27] | 肖玲玲, 黄瑞, 郭金玲, 等. 木聚糖酶的发酵动力学研究与分批补料控制[J]. 可再生能源, 2015, 33(11):1700-1705. XIAO L L, HUANG R, GUO J L, et al. Study on the dynamics of xylanase fermentation and control of fed-batch[J]. Renewable Energy Resources, 2015, 33(11):1700-1705. |
[28] | BAFFI G, MARTIN E B, MORRIS A J. Non-linear projection to latent structures revisited:the quadratic PLS algorithm[J]. Computers & Chemical Engineering, 1999, 23(3):395-411. |
[29] | 吕游, 刘吉臻, 杨婷婷, 等. 基于PLS特征提取和LS-SVM结合的NOx排放特性建模[J]. 仪器仪表学报, 2013, 34(11):2418-2424. LÜ Y, LIU J Z, YANG T T, et al. NOx emission characteristic modeling based on feature extraction using PLS and LS-SVM[J]. Chinese Journal of Scientific Instrument, 2013, 34(11):2418-2424. |
[30] | 熊富强, 桂卫华, 阳春华, 等. 基于PLS-LSSVM方法的湿法炼锌过程预测建模[J].仪器仪表学报, 2011, 32(4):941-948. XIONG F Q, GUI W H, YANG C H, et al. Forecasting modeling of zinc hydrometallurgy process based on PLS-LSSVM approach[J]. Chinese Journal of Scientific Instrument, 2011, 32(4):941-948.ve soft sensor based on time difference model and locally weighted partial least squares regression[J]. CIESC Journal,2016,67(6):2480-2487. |
[7] | 黄永红,孙丽娜,孙玉坤,等.海洋蛋白酶发酵过程生物参数的软测量建模[J]. 信息与控制, 2013,32(4):506-510. HUANG Y H, SUN L N, SUN Y K, et al. Soft sensor modeling based on biological variables of marine protease fermentation process[J]. Information and Control, 2013,42(4): 506-510. |
[8] | WANG T, SUN J W, ZHANG W D, et al. Prediction of product formation in 2-keto-l-gulonic acid fermentation through Bayesian combination of multiple neural networks[J]. Process Biochemistry, 2014,49:188-194. |
[9] | 陈进东,潘丰.基于在线支持向量回归的非线性模型预测控制方法[J]. 控制与决策, 2014,29(3):460-464. CHEN J D, PAN F. Online support vector regression-based nonlinear model predictive control[J]. Control and Decision, 2014,29(3): 460-464. |
[10] | LIU G H, ZHOU D W, XU H X, et al. Model optimization of SVM for a fermentation soft sensor[J]. Expert Systems with Applications,2010,37(4): 2708-2713. |
[11] | ACUNA G, RAMIREZ C, CURILEM M. Software sensors for biomass concentration in a SSC process using artificial neural networks and support vector machine[J]. Bioprocess Biosyst. Eng., 2014,37(1): 27-36. |
[12] | SUYKENS J A K, VANDEWALLE J. Least squares support machine classifiers[J]. Neural Processing Letters,1999,9(3): 293-300. |
[13] | WANG X F, CHEN J D, LIU C B, et al. Hybrid modeling of penicillin fermentation process based on least square support vector machine[J]. Chemical Engineering Research and Design, 2010,88: 415-420. |
[14] | NIU D P, JIA M X, WANG F L, et al. Optimization of Nosiheptide fed-batch fermentation process based on hybrid model[J]. Industrial & Engineering Chemistry Research,2013,52:3373-3380. |
[15] | 熊伟丽,姚乐,徐保国. 混沌最小二乘支持向量机及其在发酵过程建模中的应用[J]. 化工学报, 2013,64(12):4585-4591. XIONG W L, YAO L, XU B G. Chaos least squares support vector machine and its application on fermentation process modeling[J]. CIESC Journal,2013,64(12): 4585-4591. |
[16] | 陶劲松,杨亚帆,李远华.基于PLS和SVM的纸张抗张强度建模比较[J].华南理工大学学报(自然科学版), 2014,42(7):132-137. TAO J S, YANG Y F, LI Y H. Comparison of paper tensile strength prediction models based on PLS and SVM methods[J]. Journal of South China University of Technology (Natural Science Edition) ,2014,42(7):132-137. |
[17] | TAE C P, TAE Y K, YEONG K Y. Prediction of the melt flow index using partial least squares and support vector regression in high-density polyethylene (HDPE) process[J]. Korean J. Chem. Eng.,2010,27(6):1662-1668. |
[18] | FACCO P, DOPLICHER F, BEZZO F, et al. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process[J]. J. Process Control, 2009,19(3): 520-529. |
[19] | KANEKO H, ARAKAWA M, FUNATSU K. Development of a new soft sensor method using independent component analysis and partial least squares[J]. AIChE J.,2009,55(1):87-98. |
[20] | 汤伟,于东伟,张怡真. 基于递推PLS的置换蒸煮终点软测量建模研究[J]. 中国造纸学报,2015,30(3) :47-50. TANG W,YU D W, ZHANG Y Z. Research on cooking end point modeling based on recursive PLS for displacement cooking[J]. Transactions of China Pulp and Paper,2015,30(3): 47-50. |
[21] | FUJIWARA K, SAWADA H, KANO M. Input variable selection for PLS modeling using nearest correlation spectral clustering[J]. Chemometrics and Intelligent Laboratory Systems,2012,118:109-119. |
[22] | 赵朋程,刘彬,高伟,等.用于水泥熟料fCaO预测的多核最小二乘支持向量机模型[J].化工学报,2016,67(6): 2480-2487. ZHAO P C, LIU B, GAO W, et al. Multiple kernel least square support vector machine model for prediction of cement clinker lime content[J]. CIESC Journal,2016,67(6):2480-2487. |
[23] | XIAO J, SHI Z P, GAO P, et al. On-line optimization of glutamate production based on balanced metabolic control by RQ[J]. Bioprocess Biosyst. Eng., 2006,29(2):109-117. |
[24] | 董传亮. 谷氨酸发酵过程的故障诊断研究[D]. 无锡: 江南大学,2008. DONG C L. Study on fault diagnosis for glutamic acid fermentation process[D]. Wuxi: Jiangnan Univercity, 2008. |
[25] | ZHENG X W, SUN T, SUN Z Y, et al. Time-dependent kinetic models for glutamic acid fermentation[J]. Enzyme and Microbial Technology,1998,22:205-209. |
[26] | 蔡煜东,陈常庆.用遗传算法辨识发酵动力学模型参数[J].化工学报,1995,46(3): 338-342. CAI Y D, CHEN C Q. Recognition of parameters in fermentation dynamics model by genetic algorithm[J]. CIESC Journal,1995,46(3):338-342. |
[27] | 肖玲玲,黄瑞,郭金玲,等. 木聚糖酶的发酵动力学研究与分批补料控制[J]. 可再生能源, 2015,33(11):1700-1705. XIAO L L, HUANG R, GUO J L, et al. Study on the dynamics of Xylanase fermentation and control of fed-batch[J]. Renewable Energy Resources, 2015,33(11):1700-1705. |
[28] | BAFFI G, MARTIN E B, MORRIS A J. Non-linear projection to latent structures revisited: the quadratic PLS algorithm[J]. Computers & Chemical Engineering, 1999,23(3):395-411. |
[29] | 吕游,刘吉臻,杨婷婷,等. 基于PLS特征提取和LS-SVM结合的NOx排放特性建模[J]. 仪器仪表学报, 2013,34(11):2418-2424. LV Y, LIU J Z, YANG T T, et al. NOx emission characteristic modeling based on feature extraction using PLS and LS-SVM[J]. Chinese Journal of Scientific Instrument, 2013,34(11):2418-2424. |
[30] | 熊富强,桂卫华,阳春华,等. 基于PLS-LSSVM方法的湿法炼锌过程预测建模[J].仪器仪表学报, 2011, 32(4):941-948. XIONG F Q, GUI W H, YANG C H, et al. Forecasting modeling of zinc hydrometallurgy process based on PLS-LSSVM approach[J]. Chinese Journal of Scientific Instrument, 2011, 32(4):941-948. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[8] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[9] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[10] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[11] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[12] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[13] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
[14] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[15] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||