[1] |
ORTIZ-MARTINEZ V M, SALAR-GARCIA M J. Developments in microbial fuel cell modeling[J]. Chemical Engineering Journal, 2015, 271:50-60.
|
[2] |
AN A M, WANG J, ZHANG H C, et al. Dynamics analysis of a microbial fuel cell system and PID control of its power and current based on the critical proportion degree method[J]. Environmental Engineering and Management Journal, 2015, 14(8):1821-1828.
|
[3] |
安爱民, 张爱华, 张浩琛. 影响微生物燃料电池产电性能主要因素分析及其性能测试[J]. 计算机与应用化学. 2014, 11:1287-1292. AN A M, ZHANG A H, ZHANG H C. Analysis of main factors of the effects microbial fuel cell on performances of electricity production and performance test[J]. Computer and Applied Chemistry, 2014, 11:1287-1292.
|
[4] |
安爱民, 王静. 基于广义预测控制策略的微生物燃料电池控制[J]. 化工学报, 2016, 67(3):1287-1292. AN A M, WANG J. Control strategy of microbial fuel cell based on generalized predictive control[J].CIESC Journal, 2016, 67(3):1287-1292.
|
[5] |
LOGAN B, CHENG S, WATSON V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9):3341-3346.
|
[6] |
MIRELLA D L, KEITH S. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell[J]. Chemical Engineering Journal, 2010, 156:40-45.
|
[7] |
HAO R, CESAR I T. Improved current and power density with a micro-scale microbial fuel cell due to a small characteristic length[J]. Biosensors and Bioelectronics, 2014, 61:587-592.
|
[8] |
CHENG S A, BRUCE E L. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells[J]. Bioresource Technology, 2011, 102:4468-4473.
|
[9] |
CHENG S A, XING D F. Electricity generation of single-chamber microbial fuel cells at low temperatures[J]. Biosensors and Bioelectronics, 2011, 26:1913-1917.
|
[10] |
ABHIJEET P B, CHOO Y H. Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems[J]. Biochemical Engineering Journal, 2009, 48:71-80.
|
[11] |
PABLO L, JOHN G, IOANNIS I. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells[J]. Bioresource Technology, 2012, 118:615-618.
|
[12] |
MASIH K A, SOHEILA Y. A combined model for large scale batch culture MFC-digester with various wastewaters through different populations[J]. Bioelectrochemistry, 2015, 106:298-307.
|
[13] |
MASIH K A, MOHAMMAD M M. A generalized model for complex wastewater treatment with simultaneous bioenergy production using the microbial electrochemical cell[J]. Electrochimica Acta, 2015, 167:84-96.
|
[14] |
ABHIJEET P B, CHOO Y H. Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems[J]. Biochemical Engineering Journal, 2009, 48:71-80.
|
[15] |
TAO X Y, LI N, LI S Y. Multiple model predictive control for large envelope flight of hypersonic vehicle systems[J]. Information Sciences, 2016, 328:115-126.
|
[16] |
OLIVEIRA V B, SIMOES M A. 1D mathematical model for a microbial fuel cell[J]. Energy, 2013, 61:463-471.
|
[17] |
PINTO R P. A two-population bio-electrochemical model of a microbial fuel cells[J]. Biochemical Engineering Journal, 2013, 73:53-64.
|
[18] |
ZENG Y Z, CHOO Y F, KIM B H, et al. Modelling and simulation of two-chamber microbial fuel cell[J]. Journal of Power Sources, 2010, 195:79-89.
|
[19] |
MIN H F, DUAN N. Neural network -based adaptive state-feedback control for high-order stochastic nonlinear[J]. Acta Auto Matica Sinica, 2014, 40(12):2968-2970.
|
[20] |
SEYED M R, REZA G, ABOLZAL R N. Proton exchange membrane fuel cell voltage-tracking using artificial neural networks[J]. Journal of Zhengjiang University-Science C, 2011, 12(4):338-344.
|
[21] |
李大字, 刘方, 靳其兵. 自增长混合神经网络及其在燃料电池建模中的应用[J]. 化工学报, 2015, 66(1):333-337. LI D Z, LIU F, JIN Q B. Self-growing hybrid neural network and its application for fuel cell modelling[J]. CIESC Journal, 2015, 66(1):333-337.
|
[22] |
李东娟. 连续搅拌反应釜的自适应神经网络控制[J]. 化工学报, 2013, 64(12):4674-4680. LI D J. Adaptive neural network control for continuous stirred tank reactor[J]. CIESC Journal, 2013, 64(12):4674-4680.
|
[23] |
王志文, 刘毅, 高增梁. 时变间歇过程的2D-PID自适应控制方法[J]. 化工学报, 2016, 67(3):991-997. WANG Z W, LIU Y, GAO Z L. 2D-PID adaptive control method for time-varying batch processes[J]. CIESC Journal, 2016, 67(3):991-997.
|
[24] |
韩改堂, 乔俊飞, 韩红桂. 基于递归模糊神经网络的污水处理控制方法[J]. 化工学报, 2016, 67(3):954-959. HAN G T, QIAO J F, HAN H G. Wastewater treatment control method based on recurrent fuzzy neural network[J]. CIESC Journal, 2016, 67(3):954-959.
|
[25] |
彭永臻, 王之晖, 王淑莹. 基于BP神经网络的A/O脱氮系统外加碳源的仿真研究[J]. 化工学报, 2005, 56(2):296-300. PENG Y Z, WANG Z H, WANG S Y. Simulation of external carbon addition to anoxic-oxic process based on back-propagation neural network[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(2):296-300.
|
[26] |
郭伟, 倪家健, 周丽. 改进型预测函数控制算法及其应用[J]. 控制工程, 2013, 20(4):602-606. GUO W, NI J J, ZHOU L. Improved predictive functional control algorithm and its application[J]. Control Engineering of China, 2013, 20(4):602-606.
|
[27] |
周洪煜, 梁东义, 周松杰. 废水中和过程的RBF神经网络预测控制[J]. 控制工程, 2014, 21(1):79-83. ZHOU H Y, LIANG D Y, ZHOU S J. RBFNN predivtive control of wastewater neutralization process[J]. Control Engineering of China, 2014, 21(1):79-83.
|
[28] |
CHEN Q H, GAO L J. Multiple model predictive control for a hybrid proton exchange membrane fuel cell system[J]. Journal of Power Sources, 2009, 191:473-482.
|
[29] |
OLADIPUPO B, YSKANDAR H, KARIM D. Coagulation process control in water treatment plants using multiple model predictive control[J]. Alexandria Engineering Journal, 2014, 53:939-948.
|
[30] |
HE D F, WANG L, YU L. Multi-objective nonlinear predictive control of process systems:a dual-mode tracking control approach[J]. Journal of Process Control, 2015, 25:142-151.
|
[31] |
YAN M X, FAN L P. Constant voltage output in two-chamber microbial fuel cell under fuzzy PID control[J]. Electrochemical Science, 2013, 8:3321-3332.
|