CIESC Journal ›› 2017, Vol. 68 ›› Issue (3): 1090-1098.DOI: 10.11949/j.issn.0438-1157.20161627

Previous Articles     Next Articles

Dynamic performance analysis and neural network predictive control of microbial fuel cell

AN Aimin, LIU Yunli, ZHANG Haochen, ZHENG Chendong, FU Juan   

  1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
  • Received:2016-11-16 Revised:2016-11-20 Online:2017-03-05 Published:2017-03-05
  • Contact: 10.11949/j.issn.0438-1157.20161627
  • Supported by:

    supported by the National Natural Science Foundation of China (61563032) and the Natural Science Foundation of Gansu Province (145RJZ024,145RJYA313).

微生物燃料电池的动态性能分析及其神经网络预测控制

安爱民, 刘云利, 张浩琛, 郑晨东, 付娟   

  1. 兰州理工大学电信学院, 甘肃 兰州 730050
  • 通讯作者: 刘云利,liuyunliwin@163.com
  • 基金资助:

    国家自然科学基金项目(61563032);甘肃省自然科学基金项目(145RJZ024,145RJYA313)。

Abstract:

The control of substrate concentration for microbial fuel cell (MFC) is an important part of the entire MFC system, which have a great effect on the output voltage of MFC. The effects of input variables and control variables on the output voltage of MFC are studied, and a neural network predictive control strategy for anode feed flow of MFC is proposed, in which the load current is regarded as disturbance, aiming to solve the problem of overshoot and slow response of output voltage under conventional control strategy. The simulation results show that, compared with the PID control method, the system output voltage response of the neural network predictive control strategy is fast, the overshoot is small, and the dynamic performance of system is greatly improved.

Key words: microbial fuel cell, neural network, dynamic simulation, predictive control

摘要:

微生物燃料电池(microbial fuel cell,MFC)反应底物浓度的控制问题是整个系统优化控制的重要环节,其控制效果的优劣对系统的输出电压有很大的影响。针对MFC输出电压在常规控制策略下超调量大和响应速度慢的特点,对MFC系统模型中输入量、控制量的变化对系统输出的影响进行动态仿真;将负载电流作为扰动量,提出了针对MFC系统阳极进料流量进行控制的神经网络预测控制策略。仿真结果表明,与PID控制方法相对比,利用神经网络预测控制策略的系统输出电压响应速度快且超调量小,其动态性能得到了较大的改善。

关键词: 微生物燃料电池, 神经网络, 动态仿真, 预测控制

CLC Number: