CIESC Journal ›› 2017, Vol. 68 ›› Issue (3): 964-969.DOI: 10.11949/j.issn.0438-1157.20161628

Previous Articles     Next Articles

Analysis of metabolic oscillation processes in Saccharomyces cerevisiae

PAN Duotao1,2, SHI Hongyan2, YUAN Decheng2, XIU Zhilong1   

  1. 1 School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China;
    2 Chemical Control Technology Key Laboratory of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
  • Received:2016-11-16 Revised:2016-11-26 Online:2017-03-05 Published:2017-03-05
  • Contact: 10.11949/j.issn.0438-1157.20161628
  • Supported by:

    supported by the National Natural Science Foundation of China (21476042),the Educational Commission of Liaoning Province (L2014168) and the Doctoral Research Fund of Liaoning Province (201501072).

酿酒酵母代谢过程的振荡分析

潘多涛1,2, 史洪岩2, 袁德成2, 修志龙1   

  1. 1 大连理工大学生命科学与技术学院, 辽宁 大连 116024;
    2 沈阳化工大学辽宁省化工过程控制技术重点实验室, 辽宁 沈阳 110142
  • 通讯作者: 修志龙,Zhlxiu@dlut.edu.cn
  • 基金资助:

    国家自然科学基金项目(21476042);辽宁省教育厅科研一般项目(L2014168);辽宁省博士科研启动基金项目(201501072)。

Abstract:

Oscillation phenomenon is an inherent characteristic in biological systems and plays an important role in many dynamic bioprocesses. In order to explore the certain conditons that could possibly boost a oscillation, the metabolic pathway of the Saccharomyces cerevisiae, glycolysis were researched, and the parameters of mathmatical model was analyzed. Firstly, the simulation results associated the phase diagrams indicated that the model exists sustained oscillations with constant amplitude (limit cycle oscillations). Next, bifurcation analysis approach was used to investigate the infulence of parameters for the system producing oscillations. The results showed that several parameters of the model could lead to oscillations and the range of parameters' value was obtained, which could be applied to direct the manipulation of metabolic oscillations.

Key words: systems biology, glycolysis, oscillation, limit cycle, bifurcation analysis, nonlinear programming

摘要:

振荡现象是生物的固有特征,在不同生物动态过程中都起着重要作用。为探究生物代谢过程中振荡产生的条件,以典型的酿酒酵母发酵生产乙醇过程为研究对象,采用函数连续性分析方法对其数学模型进行深入研究。首先对系统进行仿真,结合相图确认该过程存在等幅持续振荡现象(极限环振荡);以此为切入点,利用分叉分析方法考察模型参数对系统振荡现象的影响;最后根据结果分析系统产生振荡现象的条件。结果显示,该代谢途径中各步反应均有参数会对系统的振荡现象产生影响,得出产生极限环振荡的参数范围,同时根据结果分析,为今后抑制振荡或利用振荡有利特性提供指导。

关键词: 系统生物学, 糖酵解, 振荡, 极限环, 分支分析, 非线性规划

CLC Number: