CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4663-4673.DOI: 10.11949/0438-1157.20191292
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Huang ZHOU(),Yu CHANG,Xing FAN,Nannan ZHANG(),Changyuan TAO
Received:
2019-10-30
Revised:
2020-03-09
Online:
2020-10-05
Published:
2020-10-05
Contact:
Nannan ZHANG
通讯作者:
张楠楠
作者简介:
周黄(1993—),男,博士研究生,基金资助:
CLC Number:
Huang ZHOU, Yu CHANG, Xing FAN, Nannan ZHANG, Changyuan TAO. Study on diffusion-reaction coupled strengthening mechanism based on electrosynthesis of titanium dioxide nanotube array[J]. CIESC Journal, 2020, 71(10): 4663-4673.
周黄, 常禹, 范兴, 张楠楠, 陶长元. TiO2纳米管阵列电合成的扩散-反应耦合强化机制研究[J]. 化工学报, 2020, 71(10): 4663-4673.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Plot of current vs time in growth process of TiO2 nanotubes by anodization on surface of Ti electrode(a) and SEM images [(b)—(e)] of TiO2 nanotube arrays at stage(1)—(4) in Fig.1(a), respectively
1 | Kavan L, O'Regan B, Kay A, et al. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3[J]. Journal of Electroanalytical Chemistry, 1993, 346(1/2): 291-307. |
2 | Asahi R, Morikawa T, Ohwaki T, et al. Visible light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. |
3 | 赖跃坤, 孙岚, 左娟, 等. 氧化钛纳米管阵列制备及形成机理[J]. 物理化学学报, 2004, 20(9): 1063-1066. |
Lai Y K, Sun L, Zuo J, et al. Preparation and formation mechanism of titanium oxide nanotube arrays[J]. Acta Physico-Chimica Sinica, 2004, 20(9): 1063-1066. | |
4 | Jan M M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium[J]. Angewandte Chemie International Edition, 2005, 44(14): 2100-2102. |
5 | 田甜, 肖秀峰, 刘榕芳. 电化学阳极氧化自组织TiO2纳米管阵列的研究[J]. 传感技术学报, 2006, 19(5): 1014-1017. |
Tian T, Xiao X F, Liu R F. Electrochemistry anodic oxidation self assembled TiO2 nanotube arrays[J]. Chinese Journal of Sensors and Actuators, 2006, 19(5): 1014-1017. | |
6 | 李荐, 罗佳, 彭振文, 等. 不同阳极氧化条件下TiO2纳米管阵列的制备及表征[J]. 无机材料学报, 2010, 25(5): 44-48. |
Li J, Luo J, Peng Z W, et al. Preparation and characterization of TiO2 nanotube arrays under different anodizing conditions[J]. Journal of Inorganic Materials, 2010, 25(5): 44-48. | |
7 | 高佳明, 王明, 马晓华, 等. 烧结温度对TiO2/不锈钢中空纤维复合膜结构和性能的影响[J]. 化工学报, 2018, 69(11): 4879-4886. |
Gao J M, Wang M, Ma X H, et al. Effect of sintering temperature on structures and properties of TiO2/stainless steel hollow fiber composite membrane[J]. CIESC Journal, 2018, 69(11): 4879-4886. | |
8 | 覃方丽, 袁耀, 艾冠亚, 等. 三维有序大/介孔TiO2反opal光阳极制备及光电性能[J]. 化工学报, 2017, 68(7): 2925-2930. |
Qin F L, Yuan Y, Ai G Y, et al. Three-dimensional ordered macro/mesoporous TiO2 inverse opal electrode with enhanced dye-sensitized solar cells' efficiency [J]. CIESC Journal, 2017, 68(7): 2925-2930. | |
9 | 李坚, 郭丽芳, 李廷鱼, 等. 阳极氧化制备硅基TiO2纳米管阵列及形貌表征[J]. 微纳电子技术, 2019, 56(7): 522-528. |
Li J, Guo L F, Li T Y, et al. Preparation of silicon-based TiO2 nanotube arrays by anodic oxidation and morphological characterization[J]. Micronanoelectronic Technology, 2019, 56(7): 522-528. | |
10 | Dawei G, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12): 3331-3334. |
11 | Prakasam H E, Shankar K, Paulose M, et al. A new benchmark for TiO2 nanotube array growth by anodization[J]. Journal of Physical Chemistry C, 2007, 111(20): 7235-7241. |
12 | 孙岚, 李静, 庄惠芳, 等. TiO2纳米管阵列的制备、改性及其应用研究进展[J]. 无机化学学报, 2007, 23(11): 12-21. |
Sun L, Li J, Zhuang H F, et al. Progress on fabrication, modification and applications of titania nanotube arrays[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(11): 12-21. | |
13 | 管东升, 方海涛, 逯好峰, 等. 阳极氧化TiO2纳米管阵列的制备与掺杂[J]. 化学进展, 2008, 20(12): 1868-1879. |
Guan D S, Fang H T, Lu H F, et al. Preparation and doping of anodic TiO2 nanotube array[J]. Progress in Chemistry, 2008, 20(12): 1868-1879. | |
14 | 廖建军, 李士普, 曹献坤, 等. 有序TiO2纳米管阵列光催化性能研究进展[J]. 化工进展, 2011, 30(9): 2003-2012. |
Liao J J, Li S P, Cao X K, et al. Review on photocatalytic activity of highly ordered TiO2 nanotube arrays[J]. Chemical Industry and Engineering Progress, 2011, 30(9): 2003-2012. | |
15 | Zhang W, Liu Y, Guo F, et al. Kinetic analysis of anodic growth of TiO2 nanotubes: effects of voltage and temperature[J]. Journal of Materials Chemistry C, 2019, 7(45): 14098-14108. |
16 | 弓程, 向思弯, 张泽阳, 等. LaCoO3-TiO2纳米管阵列的构筑及可见光光催化性能[J]. 物理化学学报, 2019, 35(6): 616-623. |
Gong C, Xiang S W, Zhang Z Y, et al. Construction and visible-light-driven photocatalytic properties of LaCoO3-TiO2 nanotube arrays[J]. Acta Physico-Chimica Sinica, 2019, 35(6): 616-623. | |
17 | O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740. |
18 | Li H, Wang J, Huang K, et al. In-situ preparation of multi-layer TiO2 nanotube array thin films by anodic oxidation method[J]. Materials Letters, 2011, 65(8): 1188-1190. |
19 | Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications[J]. Angewandte Chemie International Edition, 2011, 50(13): 2904-2939. |
20 | Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes[J]. Journal of Materials Chemistry, 2007, 17(15): 1451-1457. |
21 | 汪静茹, 李文尧, 姚宝殿. 水热法制备二氧化钛纳米管: 形成机理、影响因素及应用[J]. 材料导报, 2016, 30(5): 144-152. |
Wang J R, Li W Y, Yao B D. Hydrothermally produced titania nanotubes: formation mechanism, influence factors and applications[J]. Materials Review, 2016, 30(5): 144-152. | |
22 | Su Z, Zhou W. Formation, morphology control and applications of anodic TiO2 nanotube arrays[J]. Journal of Materials Chemistry, 2011, 21(25): 8955-8970. |
23 | Zhu X, Han H, Duan W, et al. Research progress in formation mechanism of TiO2 nanotubes and nanopores in porous anodic oxide[J]. Acta Physico-Chimica Sinica, 2012, 28(6): 1291-1305. |
24 | Zhang S, Yu D, Li D, et al. Forming process of anodic TiO2 nanotubes under a preformed compact surface layer[J]. Journal of the Electrochemical Society, 2014, 161(10): E135-E141. |
25 | LeClere D, Velota A, Skeldon P, et al. Tracer investigation of pore formation in anodic titania[J]. Journal of the Electrochemical Society, 2008, 155(9): 487-494. |
26 | Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes[J]. Chemical Reviews, 2014, 114(19): 9385-9454. |
27 | Petukhov D I, Eliseev A A, Kolesnik I V, et al. Formation mechanism and packing options in tubular anodic titania films[J]. Microporous and Mesoporous Materials, 2008, 114(1/2/3): 440-447. |
28 | Lee W, Kim J C, Gçsele U. Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions[J]. Advanced Functional Materials, 2010, 20(1): 21-27. |
29 | Liu H, Tao L, Shen W. Controllable current oscillation and pore morphology evolution in the anodic growth of TiO₂ nanotubes[J]. Nanotechnology, 2011, 22(15): 155603. |
30 | Tao J L, Zhao J L, Tang C C, et al. Mechanism study of self-organized TiO2 nanotube arrays by anodization[J]. New Journal of Chemistry, 2008, 32(12): 2164-2168. |
31 | Tovbin Y K. Local equations of state in nonequilibrium heterogeneous physicochemical systems[J]. Russian Journal of Physical Chemistry A, 2017, 91(3): 403-424. |
32 | Fan X, Hou J, Sun D, et al. Mn-oxides catalyzed periodic current oscillation on the anode[J]. Electrochimica Acta, 2013, 102: 466-471. |
33 | Bai H, Qing S, Yang D, et al. Periodic potential oscillation during oxygen evolution catalyzed by manganese oxide at constant current[J]. Journal of the Electrochemical Society, 2017, 164(4): E78-E83. |
34 | Raja K S, Gandhi T, Misra M. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes[J]. Electrochemistry Communications, 2007, 9(5): 1069-1076. |
35 | Krischer K, Mazouz N, Fronts Grauel P., waves, and stationary patterns in electrochemical systems[J]. Angewandte Chemie, 2001, 40(5): 850-869. |
36 | 李如生. 非平衡态热力学和耗散结构[M]. 北京: 清华大学出版社, 1986. |
Li R S. Nonequilibrium Thermodynamics and Dissipative Structure[M]. Beijing: Tsinghua University Press, 1986. | |
37 | Fan X, Liao L, Chang Y, et al. Nonlinear self-organizing kinetics in the electrochemical growth of alumina nanotube arrays[J]. ChemElectroChem, 2014, 1(5): 925-932. |
38 | Thompson G E, Furneaux R C, Wood G C, et al. Nucleation and growth of porous anodic films on aluminium[J]. Nature, 1978, 272(5652): 433-435. |
39 | Guin D, Manorama S V, Latha J N L, et al. Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization, and tested for sntibacterial outcome[J]. The Journal of Physical Chemistry C, 2007, 111(36): 13393-13397. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[3] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[4] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[5] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[6] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[7] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[8] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[9] | Ke XU, Guoqiang SHI, Dongfeng XUE. Inorganic hybrid perovskite cluster materials: luminescence properties of mesoscale perovskite materials [J]. CIESC Journal, 2022, 73(6): 2748-2756. |
[10] | Yan LI, Ahui TIAN, Yi ZHOU. Characteristics of scalar transport and chemical reaction in reactive dual jets [J]. CIESC Journal, 2022, 73(5): 1947-1963. |
[11] | Binbin YU, Xinsheng JIANG, Jin YU, Yunxiong CAI, Yuxi LI, Donghai HE, Jiajia YU. Experimental and chemical dynamics study on the inhibition of combustion of aviation kerosene by C6F12O [J]. CIESC Journal, 2022, 73(4): 1834-1844. |
[12] | Ming HUANG, Liang ZHU, Zixia DING, Yiting MAO, Zhongqing MA. Synergistic interactions of biomass three-component and low-density polyethylene during co-catalytic fast pyrolysis for the production of light aromatics [J]. CIESC Journal, 2022, 73(2): 699-711. |
[13] | Keqing ZHENG, Ya SUN, Yangtian YAN, Li LI, Jun YANG. Numerical simulation of novel SOFC interconnector with thermoelectric co-enhancement [J]. CIESC Journal, 2022, 73(12): 5572-5580. |
[14] | Suijun YANG, Jiong DING, Qiyue XU, Shuliang YE, Zichao GUO, Wanghua CHEN. Kinetic predictions from adiabatic accelerating rate calorimetric data by using the model-free methods [J]. CIESC Journal, 2022, 73(11): 4987-4997. |
[15] | Ting CHEN, Zehao HU, Zhe QIN, Yuanhong CHEN, Yanqiao XU, Jian LIN, Zhixiang XIE. Microwave synthesis of AgInS2 quantum dots in organic solvent and application for white light-emitting diodes [J]. CIESC Journal, 2022, 73(11): 5167-5176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||