CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 129-139.DOI: 10.11949/j.issn.0438-1157.20151042
Previous Articles Next Articles
YUAN Haibo, LI Jianghua, LIU Long, DU Guocheng, CHEN Jian
Received:
2015-07-01
Revised:
2015-08-16
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Basic Research Program of China (2012CB720802, 2013CB733602) and the National Natural Science Foundation of China (21390204).
袁海波, 李江华, 刘龙, 堵国成, 陈坚
通讯作者:
陈坚
基金资助:
国家重点基础研究发展计划项目(2012CB720802,2013CB733602);国家自然科学基金项目(21390204)。
CLC Number:
YUAN Haibo, LI Jianghua, LIU Long, DU Guocheng, CHEN Jian. Advances in production of important platform chemicals by bio-manufacturing based on systems biology and synthetic biology[J]. CIESC Journal, 2016, 67(1): 129-139.
袁海波, 李江华, 刘龙, 堵国成, 陈坚. 基于系统生物学和合成生物学的重要平台化学品生物制造的研究进展[J]. 化工学报, 2016, 67(1): 129-139.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20151042
[1] | KERR R A. Global warming is changing the world [J]. Science, 2007, 316(5822): 188-190. |
[2] | LEE J W, NA D, PARK J M, et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals [J]. Nature Chemical Biology, 2012, 8(6): 536-546. |
[3] | JANG Y S, PARK J M, CHOI S, et al. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches [J]. Biotechnology Advances, 2012, 30(5): 989-1000. |
[4] | STEEN E J, KANG Y, BOKINSKY G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass [J]. Nature, 2010, 463(7280): 559-562. |
[5] | WERPY T, PETERSEN G. Top Value Added Chemicals from Biomass: Volume I--Results of Screening for Potential Candidates from Sugars and Synthesis Gas[M]. United States: USDOE, 2004. |
[6] | BARRETT C L, KIM T Y, KIM H U, et al. Systems biology as a foundation for genome-scale synthetic biology [J]. Current Opinion in Biotechnology, 2006, 17(5): 488-492. |
[7] | 刘夺, 杜瑾, 赵广荣, 等. 合成生物学在医药及能源领域的应用 [J]. 化工学报, 2011, 62(9): 2391-2397.LIU D, DU J, ZHAO G R, et al. Applications of synthetic biology in medicine and energy [J]. CIESC Journal, 2011, 62(9): 2391-2397. |
[8] | 徐冰, 马江锋, 梁丽亚, 等. 基于高密度培养的反复分批发酵法生产丁二酸 [J]. 化工学报, 2011, 62(9): 2595-2599.XU B, MA J F, LIANG L Y, et al. Succinic acid production by repeated batch fermentation based on high density culture [J]. CIESC Journal, 2011, 62(9): 2595-2599. |
[9] | MCKINLAY J, VIEILLE C, ZEIKUS J G. Prospects for a bio-based succinate industry [J]. Applied Microbiology and Biotechnology, 2007, 76(4): 727-740. |
[10] | LEE S J, SONG H, LEE S Y. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production [J]. Applied and Environmental Microbiology, 2006, 72(3): 1939-1948. |
[11] | MEYNIAL-SALLES I, DOROTYN S, SOUCAILLE P. A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity [J]. Biotechnology and Bioengineering, 2008, 99(1): 129-135. |
[12] | OKINO S, NOBURYU R, SUDA M, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain [J]. Applied Microbiology and Biotechnology, 2008, 81(3): 459-464. |
[13] | LIN H, BENNETT G N, SAN K Y. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions [J]. Biotechnology and Bioengineering, 2005, 90(6): 775-779. |
[14] | JANTAMA K, HAUPT M J, SVORONOS S A, et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate [J]. Biotechnology and Bioengineering, 2008, 99(5): 1140-1153. |
[15] | SÁNCHEZ A M, BENNETT G N, SAN K Y. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity [J]. Metabolic Engineering, 2005, 7(3): 229-239. |
[16] | 王乐, 倪子富, 惠明, 等. 代谢控制发酵产琥珀酸研究进展 [J]. 化工学报, 2015, 66(4): 1243-1251.WANG L, NI Z F, HUI M, et al. Research advances in metabolic control of succinic acid fermentation [J]. CIESC Journal, 2015, 66(4): 1243-1251. |
[17] | CLARK D P. The fermentation pathways of Escherichia coli [J]. FEMS Microbiology Reviews, 1989, 5(3): 223-234. |
[18] | WENDISCH V F, BOTT M, EIKMANNS B J. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids [J]. Current Opinion in Microbiology, 2006, 9(3): 268-274. |
[19] | MILLARD C S, CHAO Y P, LIAO J C, et al.. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli [J]. Applied and Environmental Microbiology, 1996, 62(5): 1808-1810. |
[20] | LIU R, LIANG L, CHEN K, et al. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli [J]. Applied Microbiology and Biotechnology, 2012, 94(4): 959-968. |
[21] | KWON Y D, LEE S Y, KIM P. Influence of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition [J]. Journal of Microbiology and Biotechnology, 2006, 16(9): 1448-1452. |
[22] | WANG X, GONG C S, TSAO G. Bioconversion of fumaric acid to succinic acid by recombinant E. coli [J]. Applied Biochemistry and Biotechnology, 1998, 70/71/72: 919-928. |
[23] | GOLDBERG I, LONBERG-HOLM K, BAGLEY E A, et al. Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase [J]. Applied and Environmental Microbiology, 1983, 45(6): 1838-1847. |
[24] | KIM P, LAIVENIEKS M, VIEILLE C, et al. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate roduction in Escherichia coli [J]. Applied and Environmental Microbiology, 2004, 70(2): 1238-1241. |
[25] | LIN H, SAN K Y, BENNETT G. Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli [J]. Applied Microbiology and Biotechnology, 2005, 67(4): 515-523. |
[26] | VEMURI G N, EITEMAN M A, ALTMAN E. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli [J]. Applied and Environmental Microbiology, 2002, 68(4): 1715-1727. |
[27] | YANG J, WANG Z, ZHU N, et al. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions [J]. Microbiological Research, 2014, 169(5/6): 432-440. |
[28] | CHATTERJEE R, MILLARD C S, CHAMPION K, et al. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli [J]. Applied and Environmental Microbiology, 2001, 67(1): 148-154. |
[29] | LEE S J, LEE D Y, KIM T Y, et al. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation [J]. Applied and Environmental Microbiology, 2005, 71(12): 7880-7887. |
[30] | LIN H, BENNETT G, SAN K Y. Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli [J]. Journal of Industrial Microbiology and Biotechnology, 2005, 32(3): 87-93. |
[31] | SONG H, LEE S Y. Production of succinic acid by bacterial fermentation [J]. Enzyme and Microbial Technology, 2006, 39(3): 352-361. |
[32] | KIM T Y, KIM H U, PARK J M, et al. Genome-scale analysis of Mannheimia succiniciproducens metabolism [J]. Biotechnology and Bioengineering, 2007, 97(4): 657-671. |
[33] | 高振, 张昆, 黄和, 等. 利用根霉菌生产富马酸 [J]. 化学进展, 2009, 21(1): 251-258.GAO Z, ZHANG K, HUANG H, et al. Fumaric acid production by Rhizopus sp. [J]. Progress in Chemistry, 2009, 21(1): 251-258. |
[34] | XU G, ZOU W, CHEN X, et al. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering [J]. PLoS ONE, 2012, 7(12): e52086. |
[35] | SONG C W, KIM D I, CHOI S, et al. Metabolic engineering of Escherichia coli for the production of fumaric acid [J]. Biotechnology and Bioengineering, 2013, 110(7): 2025-2034. |
[36] | OSMANI S A, SCRUTTON M C. The sub-cellular localisation and regulatory properties of pyruvate carboxylase from Rhizopus arrhizus [J]. European Journal of Biochemistry, 1985, 147(1): 119-128. |
[37] | KENEALY W, ZAADY E, DU PREEZ J C, et al. Biochemical aspects of fumaric acid accumulation by Rhizopus arrhizus [J]. Applied and Environmental Microbiology, 1986, 52(1): 128-133. |
[38] | WRIGHT B E, LONGACRE A, REIMERS J. Models of metabolism in Rhizopus oryzae [J]. Journal of Theoretical Biology, 1996, 182(3): 453-457. |
[39] | ZHANG B, YANG S T. Metabolic engineering of Rhizopus oryzae: effects of overexpressing fumR gene on cell growth and fumaric acid biosynthesis from glucose [J]. Process Biochemistry, 2012, 47(12): 2159-2165. |
[40] | KACLÍKOVÁ E, LACHOWICZ T M, GBELSKÁ Y, et al. Fumaric acid overproduction in yeast mutants deficient in fumarase [J]. FEMS Microbiology Letters, 1992, 91(2): 101-106. |
[41] | MOON S Y, HONG S H, KIM T Y, et al. Metabolic engineering of Escherichia coli for the production of malic acid [J]. Biochemical Engineering Journal, 2008, 40(2): 312-320. |
[42] | BATTAT E, PELEG Y, BERCOVITZ A, et al. Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor [J]. Biotechnology and Bioengineering, 1991, 37(11): 1108-1116. |
[43] | 周小燕, 陈素云, 吴清平, 等. 通气条件对曲霉N1-14'产生L-苹果酸的影响 [J]. 食品与发酵工业, 2000, 26(1): 11-15.ZHOU X Y, CHEN S Y, WU Q P, et al. Effects of aeration conditions on L-malic acid production by Aspergillus sp. N1-14' [J]. Food and Fermentation Industries, 2000, 26(1): 11-15. |
[44] | ZHANG X, WANG X, SHANMUGAM K T, et al. L-Malate production by metabolically engineered Escherichia coli [J]. Applied and Environmental Microbiology, 2011, 77(2): 427-434. |
[45] | MU L, WEN J. Engineered Bacillus subtilis 168 produces L-malate by heterologous biosynthesis pathway construction and lactate dehydrogenase deletion [J]. World Journal of Microbiology and Biotechnology, 2013, 29(1): 33-41. |
[46] | ZELLE R M, DE HULSTER E, VAN WINDEN W A, et al. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export [J]. Applied and Environmental Microbiology, 2008, 74(9): 2766-2777. |
[47] | OBA T, SUENAGA H, NAKAYAMA S, et al. Properties of a high malic acid-producing strains of Saccharomyces cerevisiae isolated from sake mash [J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(10): 2025-2029. |
[48] | MARSH C A. Metabolism of D-glucuronolactone in mammalian systems (2): Conversion of D-glucuronolactone into D-glucaric acid by tissue preparations [J]. Biochemical Journal, 1963, 87(1): 82-90. |
[49] | WALASZEK Z, SZEMRAJ J, HANAUSEK M, et al. D-Glucaric acid content of various fruits and vegetables and cholesterol-lowering effects of dietary D-glucarate in the rat [J]. Nutrition Research, 1996, 16(4): 673-681. |
[50] | OEN H, VESTRHEIM S R. Detection of non-volatile acids in sweet cherry fruits [J]. Acta Agriculturae Scandinavica, 1985, 35(2): 145-152. |
[51] | BHATTACHARYA S, MANNA P, GACHHUI R, et al. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling [J]. Toxicology and Applied Pharmacology, 2013, 267(1): 16-29. |
[52] | GUPTA K P, SINGH J. Modulation of carcinogen metabolism and DNA interaction by calcium glucarate in mouse skin [J]. Toxicological Sciences, 2004, 79(1): 47-55. |
[53] | MERBOUH N, BOBBITT J M, BRÜCKNER C. 4-AcNH-TEMPO-catalyzed oxidation of aldoses to aldaric acids using chlorine or bromine as terminal oxidants [J]. Journal of Carbohydrate Chemistry, 2002, 21(1/2): 65-77. |
[54] | PAMUK V, YILMAZ M, ALICILAR A. The preparation of D-glucaric acid by oxidation of molasses in packed beds [J]. Journal of Chemical Technology & Biotechnology, 2001, 76(2): 186-190. |
[55] | MEHLTRETTER C L, RIST C E. Sugar oxidation, saccharic and oxalic acids by the nitric acid oxidation of dextrose [J]. Journal of Agricultural and Food Chemistry, 1953, 1(12): 779-783. |
[56] | MARSH C A. Biosynthesis of D-glucaric acid in mammals: a free-radical mechanism? [J]. Carbohydrate Research, 1986, 153(1): 119-131. |
[57] | MOON T S, YOON S H, LANZA A M, et al. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli [J]. Applied and Environmental Microbiology, 2009, 75(3): 589-595. |
[58] | MOON T S, DUEBER J E, SHIUE E, et al. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli [J]. Metabolic Engineering, 2010, 12(3): 298-305. |
[59] | SHIUE E, PRATHER K L J. Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport [J]. Metabolic Engineering, 2014, 22: 22-31. |
[60] | WARNECKE T, GILL R T. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications [J]. Microbial Cell Factories, 2005, 4: 25. |
[61] | KONISHI K, IMAZU S. Method for producing glucaric acid: US20150010969A1[P]. 2015-01-08. |
[62] | 李寅, 陈坚, 伦世仪, 等. 维生素在丙酮酸过量合成中的重要作用 [J]. 微生物学报, 2000, 40(5): 528-534.LI Y, CHEN J, LUN S Y, et al. The important role of vitamins in the over-production of pyruvic acid [J]. Acta Microbiologica Sinica, 2000, 40(5): 528-534. |
[63] | LI Y, HUGENHOLTZ J, CHEN J, et al. Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy [J]. Applied Microbiology and Biotechnology, 2002, 60(1/2): 101-106. |
[64] | 刘立明, 陈坚, 李华钟, 等. 氧化磷酸化抑制剂对光滑球拟酵母糖酵解速度的影响 [J].生物化学与生物物理进展, 2005, 32(3): 251-257.LIU L M, CHEN J, LI H Z, et al. Effect of oxidative phosphorylation inhibitors on the glycolytic flux in Torulopsis glabrata [J]. Progress in Biochemistry and Biophysics, 2005, 32(3): 251-257. |
[65] | LIU L M, LI Y, DU G C, et al. Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation [J]. Journal of Applied Microbiology, 2006, 100(5): 1043-1053. |
[66] | LIU L, XU Q, LI Y, et al. Enhancement of pyruvate production by osmotic-tolerant mutant of Torulopsis glabrata [J]. Biotechnology and Bioengineering, 2007, 97(4): 825-832. |
[67] | WANG Q, HE P, LU D, et al. Metabolic engineering of Torulopsis glabrata for improved pyruvate production [J]. Enzyme and Microbial Technology, 2005, 36(5/6): 832-839. |
[68] | ZELI? B, VASI?-RA?KI ?, WANDREY C, et al. Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor [J]. Bioprocess and Biosystems Engineering, 2004, 26(4): 249-258. |
[69] | 肖慧萍, 邱祖民, 郑典模, 等. 苯丙酮酸的合成进展 [J].内蒙古工业大学学报(自然科学版), 2002, 21(1): 9-15.XIAO H P, QIU Z M, ZHENG D M, et al. The synthetic development of phenylpyruvic acid [J]. Journal of Inner Mongolia Polytechnic University(Natural Science Edition), 2002, 21(1): 9-15. |
[70] | PANTALEONE D P, GELLER A M, TAYLOR P P. Purification and characterization of an L-amino acid deaminase used to prepare unnatural amino acids [J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 11(4/5/6): 795-803. |
[71] | COBAN H, DEMIRCI A, PATTERSON P, et al. Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors [J]. Bioprocess and Biosystems Engineering, 2014, 37(11): 2343-2352. |
[72] | SMIT J A. Specific activity of phenylalanine deaminase in extracts of the proteus-providence group [J]. Nature, 1966, 211(5052): 1003. |
[73] | 陈坚, 周景文, 刘龙. 新型有机酸的生物法制造技术[M]. 北京: 化学工业出版社, 2015: 265-274.CHEN J, ZHOU J W, LIU L. Synthesis of Organic Acids by Biological Methods [M]. Beijing: Chemical Industry Press, 2015: 265-274. |
[74] | MATZI V, LINDENMANN J, MUENCH A, et al. The impact of preoperative micronutrient supplementation in lung surgery. A prospective randomized trial of oral supplementation of combined α-ketoglutaric acid and 5-hydroxymethylfurfural [J]. European Journal of Cardio-Thoracic Surgery, 2007, 32(5): 776-782. |
[75] | LOCKWOOD L B, STODOLA F H. Preliminary studies on the production of alpha-ketoglutaric acid by Pseudomonas fluorescens [J]. The Journal of Biological Chemistry, 1946, 164: 81-83. |
[76] | TANAKA K, KIMURA K, YAMAGUCHI K. Process for producing L-glutamic acid and alpha-ketoglutaric acid: US 3450599A[P]. 1969-06-17. |
[77] | FINOGENOVA T V, LOZINOV A B, BELIKOV V M, et al. Keto-acid production by paraffin-oxidizing yeasts [J]. Mikrobiologiia, 1968, 37(1): 38-43. |
[78] | YUZBASHEV T V, YUZBASHEVA E Y, SOBOLEVSKAYA T I, et al. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica [J]. Biotechnology and Bioengineering, 2010, 107(4): 673-682. |
[79] | BEOPOULOS A, CESCUT J, HADDOUCHE R, et al. Yarrowia lipolytica as a model for bio-oil production [J]. Progress in Lipid Research, 2009, 48(6): 375-387. |
[80] | IL'CHENKO A P, CHERNYAVSKAYA O G, SHISHKANOVA N V, et al. Metabolic characteristics of the mutant Yarrowia lipolytica strain 1 producing alpha-ketoglutaric and citric acids from ethanol and the effect of NH+4 and O2 on yeast respiration and acidogenesis [J]. Microbiology, 2001, 70(2): 151-157. |
[81] | IL'CHENKO A P, CHERNYAVSKAYA O G, SHISHKANOVA N V, et al. Metabolism of Yarrowia lipolytica grown on ethanol under conditions promoting the production of alpha-ketoglutaric and citric acids: a comparative study of the central metabolism enzymes [J]. Microbiology, 2002, 71(3): 269-274. |
[82] | FOERSTER A, JACOBS K, JURETZEK T, et al. Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica [J]. Applied Microbiology and Biotechnology, 2007, 77(4): 861-869. |
[83] | HOLZ M, FOERSTER A, MAUERSBERGER S, et al. Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica [J]. Applied Microbiology and Biotechnology, 2009, 81(6): 1087-1096. |
[84] | YIN X, MADZAK C, DU G, et al. Enhanced alpha-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway [J]. Applied Microbiology and Biotechnology, 2012, 96(6): 1527-1537. |
[85] | HOLZ M, OTTO C, KRETZSCHMAR A, et al. Overexpression of alpha-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on production of organic acids [J]. Applied Microbiology and Biotechnology, 2011, 89(5): 1519-1526. |
[86] | ROMÁN-LESHKOV Y, CHHEDA J N, DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose [J]. Science, 2006, 312(5782): 1933-1937. |
[87] | LEWKOWSKI J. Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives [J]. Arkivoc, 2001: 17-54. |
[88] | CHRISTENSEN C H, RASS-HANSEN J, MARSDEN C C, et al. The renewable chemicals industry [J]. ChemSusChem, 2008, 1(4): 283-289. |
[89] | ZHU J, CAI J, XIE W, et al. Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: synthesis, physical properties, and crystal structure [J]. Macromolecules, 2013, 46(3): 796-804. |
[90] | KAMM B. Production of platform chemicals and synthesis gas from biomass [J]. Angewandte Chemie:International Edition, 2007, 46(27): 5056-5058. |
[91] | CASANOVA O, IBORRA S, CORMA A. Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts [J]. ChemSusChem, 2009, 2(12): 1138-1144. |
[92] | CARLINI C, PATRONO P, GALLETTI A M R, et al. Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate [J]. Applied Catalysis A: General, 2005, 289(2): 197-204. |
[93] | GORBANEV Y Y, KLITGAARD S K, WOODLEY J M, et al. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature [J]. ChemSusChem, 2009, 2(7): 672-675. |
[94] | THOMAS S M, DICOSIMO R, NAGARAJAN V. Biocatalysis: applications and potentials for the chemical industry [J]. Trends in Biotechnology, 2002, 20(6): 238-242. |
[95] | VAN DEURZEN M P J, VAN RANTWIJK F, SHELDON R A. Chloroperoxidase-catalyzed oxidation of 5-hydroxymethylfurfural [J]. Journal of Carbohydrate Chemistry, 1997, 16(3): 299-309. |
[96] | KOOPMAN F, WIERCKX N, DE WINDE J H, et al. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(11): 4919-4924. |
[97] | KOOPMAN F, WIERCKX N, DE WINDE J H, et al. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid [J]. Bioresource Technology, 2010, 101(16): 6291-6296. |
[98] | DIJKMAN W P, FRAAIJE M W. Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688 [J]. Applied and Environmental Microbiology, 2014, 80(3): 1082-1090. |
[99] | DIJKMAN W P, GROOTHUIS D E, FRAAIJE M W. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid [J]. Angewandte Chemie-International Edition, 2014, 53(25): 6515-6518. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[4] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[5] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[6] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[7] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[8] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[9] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[10] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[11] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[12] | Jiachen SUN, Wentao SUN, Hui SUN, Bo LYU, Chun LI. Licorice flavone synthase Ⅱ catalyzes liquiritigenin to specifically synthesize 7,4′-dihydroxyflavone [J]. CIESC Journal, 2022, 73(7): 3202-3211. |
[13] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[14] | Lin WANG, Qian FU, Shuai XIAO, Zhuo LI, Jun LI, Liang ZHANG, Xun ZHU, Qiang LIAO. High-efficient visible light responsive microbial photoelectrochemical system for CO2 reduction to CH4 [J]. CIESC Journal, 2022, 73(2): 887-893. |
[15] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||