[1] |
李琳. 聚酰亚胺基炭膜的制备、热解机理及结构调控[D]. 大连:大连理工大学, 2013. LI L. Preparation, pyrolysis mechanism and structure modification of polyimide based carbon membrane[D]. Dalian:Dalian University of Technology, 2013.
|
[2] |
GRUBER A, SALIMATH P S, CHEN J H. Direct numerical simulation of laminar flame-wall interaction for a novel H2-selective membrane/injector configuration[J]. International Journal of Hydrogen Energy, 2014, 39(11):5906-5918.
|
[3] |
ALLEN M P, TILDESLEY D J, BANAVAR J R. Computer Simulation of Liquids[M]. Oxford:Oxford University Press, 1987:1-6.
|
[4] |
FRENKEL D, SMIT B, RATNER M A. Understanding Molecular Simulation:From Algorithms to Applications[M]. New York:Academic Press, 1996:2-5.
|
[5] |
潘艳秋. 炭膜分离过程的机理和建模研究[D]. 大连:大连理工大学, 2008. PAN Y Q. Mechanisms and modeling of carbon membrane separation[D]. Dalian:Dalian University of Technology, 2008.
|
[6] |
XU L F, SAHIMI M, TSOTSIS T T. Non-equilibrium molecular dynamics simulation of transport and separation of gases in carbon nanopores (Ⅰ):Basic results[J]. Journal of Chemical Physics, 1999, 111(7):3252-3264.
|
[7] |
WANG S M, YU Y X, GAO G H. Non-equilibrium molecular dynamics simulation on pure gas permeability through carbon membranes[J]. Chinese Journal of Chemical Engineering, 2006, 14(2):164-170.
|
[8] |
ANDERSON C J, TAO W, JIANG J W, et al. An experimental evaluation and molecular simulation of high temperature gas adsorption on nanoporous carbon[J]. Carbon, 2011, 49(1):117-125.
|
[9] |
吴志强. 气体在纳米孔碳膜内吸附、扩散及分离的分子模拟研究[D]. 北京:北京化工大学, 2008. WU Z Q. Molecular simulation study on adsorption, diffusion and separation of gases in nanoporous carbon membranes[D]. Beijing:Beijing University of Chemical Technology, 2008.
|
[10] |
GHOLAMPOUR F, YEGANEGI S. Molecular simulation study on the adsorption and separation of acidic gases in a model nanoporous carbon[J]. Chemical Engineering Science, 2014, 117(1):426-435.
|
[11] |
YEGANEGI S, GHOLAMPOUR F. Methane adsorption and diffusion in a model nanoporous carbon:an atomistic simulation study[J]. Adsorption, 2013, 19(5):979-987.
|
[12] |
GHOLAMPOUR F, YEGANEGI S. Simulation of methane adsorption and diffusion in a CNT channel[J]. Chemical Engineering Science, 2016, 140(2):62-70.
|
[13] |
SU J C, LUA A C. Experimental and theoretical studies on gas permeation through carbon molecular sieve membranes[J]. Separation & Purification Technology, 2009, 69(2):161-167.
|
[14] |
LITHOXOOS G P, LABROPOULOS A, PERISTERAS L D, et al. Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes:a combined experimental and Monte Carlo molecular simulation study[J]. The Journal of Supercritical Fluids, 2010, 55(2):510-523.
|
[15] |
雷广平, 刘朝, 解辉. H2S/CH4混合物在石墨烯表面吸附性能的分子动力学模拟[J]. 工程热物理学报, 2014, 35(3):428-431. LEI G P, LIU Z, XIE H. Molecular dynamics simulations of adsorption performances for H2S/CH4 mixture on graphene surface[J]. Journal of Engineering Thermodynamics, 2014, 35(3):428-431.
|
[16] |
LEI G P, LIU Z, XIE H, et al. Separation of the hydrogen sulfide and methane mixture by the porous graphene membrane:effect of the charges[J]. Chemical Physics Letters, 2014, 599(4):127-132.
|
[17] |
温伯尧, 孙成珍, 白博峰. 多孔石墨烯分离CH4/CO2的分子动力学模拟[J]. 物理化学学报, 2015, 31(2):261-267. WEN B Y, SUN C Z, BAI B F. Molecular dynamics simulation of the separation of CH4/CO2 by nanoporous graphene[J]. Acta Physico-Chimica Sinica, 2015, 31(2):261-267.
|
[18] |
SHAN M X, XUE Q Z, JING N N, et al. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes[J]. Nanoscale, 2012, 17(4):5477-5482.
|
[19] |
赵昊瀚, 潘艳秋, 何流, 等. 炭膜分离CO2/CH4混合气的分子模拟[J]. 化工学报, 2016, 67(6):2393-2400. ZHAO H H, PAN Y Q, HE L, et al. Molecular simulation on separation of CO2/CH4 gas mixture with carbon membrane[J]. CIESC Journal, 2016, 67(6):2393-2400.
|
[20] |
张兵. 分子筛炭膜的制备、微结构及气体分离性能[D]. 大连:大连理工大学, 2006. ZHANG B. Preparation, microstructure and gas separation performance of molecular sieving carbon membranes[D]. Dalian:Dalian University of Technology, 2006.
|
[21] |
FU S L, SANDERS E S, KULKARNI S S, et al. Carbon molecular sieve membrane structure-property relationships for four novel 6FDA based polyimide precursors[J]. Journal of Membrane Science, 2015, 487(1):60-73.
|
[22] |
FURUKAWA S, SUGAHARA T, NITTA T. Non-equilibrium MD studies on gas permeation through carbon membranes with belt-like heterogeneous surfaces[J]. Journal of Chemical Engineering of Japan, 1999, 32(2):223-228.
|
[23] |
FURUKAWA S, SHIGETA T, NITTA T. Non-equilibrium molecular dynamics for simulation permeation of gas mixtures through nanoporous carbon membranes[J]. J. Chem. En. Jpn., 1996, 29(4):725-728.
|
[24] |
JEON H J, CHOI J H, LEE Y, et al. Highly selective CO2 capturing polymeric organic network structures[J]. Advanced Energy Materials, 2012, 2(2):225-228.
|
[25] |
陈安亮. 炭膜的二氧化碳吸附扩散性能的研究[D]. 大连:大连理工大学, 2012. CHEN A L. The CO2 adsorption and diffusion performances in carbon membrane[D]. Dalian:Dalian University of Technology, 2012.
|
[26] |
NING X, KOROS W J. Carbon molecular sieve membranes derived from Matrimid polyimide for nitrogen/methane separation[J]. Carbon, 2014, 66(1):511-522.
|
[27] |
FU S L, WENZ G B, SANDERS E S, et al. Effects of pyrolysis conditions on gas separation properties of 6FDA/DETDA:DABA (3:2) derived carbon molecular sieve membranes[J]. Journal of Membrane Science, 2016, 520(24):699-711.
|
[28] |
FU S L, SANDERS E S, KULKARNI S S, et al. Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides:Entropic selectivity evaluation[J]. Carbon, 2015, 95(1):995-1006.
|
[29] |
LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. J. Am. Chem. Soc., 1918, 40(9):1361-1403.
|
[30] |
近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 2版. 北京:化学工业出版社, 2005:96-101. KONDO S, ISHIKAWA T, ABE I. Kyuchaku no Kagaku[M]. LI G X, trans. 2nd ed. Beijing:Chemical Industry Press, 2005:96-101.
|
[31] |
曹伟, 吕玲红, 黄亮亮, 等. 不同管径碳纳米管中CO2/CH4分离的分子模拟[J]. 化工学报, 2014, 65(5):1736-1742. CAO W, LÜ L H, HUANG L L, et al. Molecular simulations on diameter effect of carbon nanotube for separation of CO2/CH4[J]. CIESC Journal, 2014, 65(5):1736-1742.
|