[1] |
BAKSHI B R, LOCHER G, STEPHANOPOULOS G, et al. Analysis of operating data for evaluation, diagnosis and control of batch operations[J]. Journal of Process Control, 1994, 4(4):179-194.
|
[2] |
WISE B M, GALLAGHER N B, BUTLER S W, et al. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process[J]. Journal of Chemometrics, 1999, 13(3/4):379-396.
|
[3] |
RATO T J, RENDALL R, GOMES V, et al. A systematic methodology for comparing batch process monitoring methods(Ⅰ):Assessing detection strength[J]. Industrial & Engineering Chemistry Research, 2016, 55:5342-5358.
|
[4] |
CAMACHO J, PICÓ J, FERRER A. Bilinear modelling of batch processes(Ⅰ):Theoretical discussion[J]. Journal of Chemometrics, 2008, 22(5):299-308.
|
[5] |
曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进[J]. 化工学报, 2013, 64(3):788-800. CAO P F, LUO X L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3):788-800.
|
[6] |
WANG H, YAO M. Fault detection of batch processes based on multivariate functional kernel principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 149:78-89.
|
[7] |
王立敏, 杨继胜, 于晶贤, 等. 基于T-S模糊模型的间歇过程的迭代学习容错控制[J]. 化工学报, 2017, 68(3):1081-1089. WANG L M, YANG J S, YU J X, et al. Iterative learning fault-tolerant control for batch processes based on T-S fuzzy model[J]. CIESC Journal, 2017, 68(3):1081-1089.
|
[8] |
KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4):795-814.
|
[9] |
ZHANG Z J, CHEN J H. Correntropy based data reconciliation and gross error detection and identification for nonlinear dynamic processes[J]. Computers & Chemical Engineering, 2015, 75:120-134.
|
[10] |
CENCIC O, FRÜHWIRTH R. A general framework for data reconciliation(Ⅰ):Linear constraints[J]. Computers & Chemical Engineering, 2015, 75:196-208.
|
[11] |
蒋余厂, 刘爱伦. 基于GLR-NT的显著性误差检测与数据协调[J]. 华东理工大学学报(自然科学版), 2011, 37(4):502-508. JIANG Y C, LIU A L. Gross error detection and data reconciliation based on a GLR-NT combined method[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2011, 37(4):502-508.
|
[12] |
GE Z Q, SONG Z H, GAO F R. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562.
|
[13] |
WANG J S, CHIANG J C. A cluster validity measure with outlier detection for support vector clustering[J]. IEEE Transactions on Systems Man and Cybernetics, Part B-Cybernetics, 2008, 38(1):78-89.
|
[14] |
田慧欣, 毛志忠, 赵珍. 与软测量建模相结合的过失误差侦破新方法[J]. 仪器仪表学报, 2008, 29(12):2658-2662. TIAN H X, MAO Z Z, ZHAO Z. New method of gross error detection combined with soft sensor modeling[J]. Chinese Journal of Scientific Instrument, 2008, 29(12):2658-2662.
|
[15] |
COAKLEY D, RAFTERY P, KEANE M. A review of methods to match building energy simulation models to measured data[J]. Renewable and Sustainable Energy Reviews, 2014, 37(3):123-141.
|
[16] |
NARASIMHAN S, BHATT N. Deconstructing principal component analysis using a data reconciliation perspective[J]. Computers & Chemical Engineering, 2015, 77:74-84.
|
[17] |
LUO L J, BAO S Y, MAO J F, et al. Phase partition and phase-based process monitoring methods for multiphase batch processes with uneven durations[J]. Industrial & Engineering Chemistry Research, 2016, 55(7):2035-2048.
|
[18] |
ZADEH L A. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination[J]. AI Magazine, 1986, 7(2):85-90.
|
[19] |
陈斌, 万江文, 吴银锋, 等. 神经网络和证据理论融合的管道泄漏诊断方法[J]. 北京邮电大学学报, 2009, 32(1):5-9. CHEN B, WAN J W, WU Y F, et al. A pipeline leakage diagnosis for fusing neural network and evidence theory[J]. Journal of Beijing University of Posts and Telecommunications, 2009, 32(1):5-9.
|
[20] |
GHOSH K, NATARAJAN S, SRINIVASAN R. Hierarchically distributed fault detection and identification through Dempster-Shafer evidence fusion[J]. Industrial & Engineering Chemistry Research, 2011, 50(15):9249-9269.
|
[21] |
HUI K H, LIM M H, LEONG M S, et al. Dempster-Shafer evidence theory for multi-bearing faults diagnosis[J]. Engineering Applications of Artificial Intelligence, 2017, 57:160-170.
|
[22] |
DEMPSTER A P. The Dempster-Shafer calculus for statisticians[J]. International Journal of Approximate Reasoning, 2008, 48(2):365-377.
|
[23] |
LIU W R. Analyzing the degree of conflict among belief functions[J]. Artificial Intelligence, 2006, 170(11):909-924.
|
[24] |
MURPHY C K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29(1):1-9.
|
[25] |
NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis[J]. AIChE Journal, 1994, 40(8):1361-1375.
|
[26] |
KIERS H A L, TEN BERGE J M F, BRO R. PARAFAC2(Ⅰ):A direct fitting algorithm for the PARAFAC2 model[J]. Journal of Chemometrics, 1999, 13(3/4):275-294.
|
[27] |
韩敏, 张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6):2139-2149. HAN M, ZHANG Z K. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. CIESC Journal, 2015, 66(6):2139-2149.
|
[28] |
BASIR O, YUAN X H. Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory[J]. Information Fusion, 2007, 8(4):379-386.
|
[29] |
BIROL G, ÜNDEY C, CINAR A. A modular simulation package for fed-batch fermentation:penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11):1553-1565.
|
[30] |
JACKSON J E. A User's Guide to Principal Components[M]. New York:John Wiley & Sons, 2005.
|