[1] |
YAO Y, GAO F R. A survey on multistage/multiphase statistical modeling methods for batch processes[J]. Annual Reviews in Control, 2009, 33(2):172-183.
|
[2] |
GUO J Y, YUAN T M, LI Y. Fault detection of multimode process based on local neighbor normalized matrix[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 154:162-175.
|
[3] |
ZHAO L P, ZHAO C H, GAO F R. Between-mode quality analysis based multimode batch process quality prediction[J]. Industrial & Engineering Chemistry Research, 2014, 53(40):15629-15638.
|
[4] |
PENG K X, ZHANG K, YOU B, et al. A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2615-2624.
|
[5] |
郭金玉, 袁堂明, 李元. 一种不等长的多模态间歇过程故障检测方法[J]. 化工学报, 2016, 67(7):2916-2924. GUO J Y, YUAN T M, LI Y. Fault detection method for uneven-length multimode batch processes[J]. CIESC Journal, 2016, 67(7):2916-2924.
|
[6] |
ZHAO L P, ZHAO C H, GAO F R. Inter-batch-evolution-traced process monitoring based on inter-batch mode division for multiphase batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 138:178-192.
|
[7] |
MUNOZ J C, CHEN J H. Removal of the effects of outliers in batch process data through maximum correntropy estimator[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 111(1):53-58.
|
[8] |
JIN H P, CHEN X G, YANG J W, et al. Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes[J]. Computers & Chemical Engineering, 2014, 71:77-93.
|
[9] |
WAN J, MARJANOVIC O, LENNOX B. Uneven batch data alignment with application to the control of batch end-product quality[J]. ISA Transactions, 2014, 53(2):584-590.
|
[10] |
蒋余厂, 刘爱伦. 基于GLR-NT的显著性误差检测与数据协调[J]. 华东理工大学学报(自然科学版), 2011, 37(4):502-508. YU A C, LIU A L. Gross error detection and data reconciliation based on a GLR-NT combined method[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2011, 37(4):502-508.
|
[11] |
CONGLI M E I, HONGYE S U, JIAN C H U. An NT-MT combined method for gross error detection and data reconciliation[J]. Journal of Chemical Engineering, 2006, 14(5):592-596.
|
[12] |
田惠欣, 毛志忠, 赵珍. 与软测量建模相结合的过失误差侦破新方法[J]. 仪器仪表学报, 2008, 29(12):2658-2662. TIAN H X, MAO Z Z, ZHAO Z. New method of gross error detection combined with soft sensor modeling[J]. Chinese Journal of Scientific Instrument, 2008, 29(12):2658-2662.
|
[13] |
WANG S, CHANG Y Q, ZHAO Z, et al. Multi-phase MPCA modeling and application based on an improved phase separation method[J]. International Journal of Control, Automation and Systems, 2012, 10(6):1136-1145.
|
[14] |
ZHAO C H. Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring[J]. AIChE Journal, 2014, 60(2):559-573.
|
[15] |
YU J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(40):13227-13237.
|
[16] |
ZHAO L P, ZHAO C H, GAO F R. Regression modeling and quality prediction for multiphase batch processes with inner-phase analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 135:1-16.
|
[17] |
YU J, CHEN J Y, RASHID M M. Multiway independent component analysis mixture model and mutual information based fault detection and diagnosis approach of multiphase batch processes[J]. AIChE Journal, 2013, 59(8):2761-2779.
|
[18] |
MORI J, YU J. Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach[J]. Journal of Process Control, 2014, 24(1):57-71.
|
[19] |
曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进[J]. 化工学报, 2013, 64(3):788-800. CAO P F, LUO X L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3):788-800.
|
[20] |
KANG J H, YU J, KIM S B. Adaptive nonparametric control chart for time-varying and multimodal processes[J]. Journal of Process Control, 2016, 37:34-45.
|
[21] |
TAX D M J, DUIN R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11):1191-1199.
|
[22] |
张建明, 葛志强, 谢磊, 等. 基于支持向量数据描述的非高斯过程故障重构与诊断[J]. 化工学报, 2009, 60(1):168-171. ZHANG J M, GE Z Q, XIE L, et al. Non-Gaussian process monitoring and fault reconstruction and diagnosis based on SVDD[J]. CIESC Journal, 2009, 60(1):168-171.
|
[23] |
GE Z Q, GAO F R, SONG Z H. Batch process monitoring based on support vector data description method[J]. Journal of Process Control, 2011, 21(6):949-959.
|
[24] |
王培良, 葛志强, 宋执环. 基于迭代多模型ICA-SVDD的间歇过程故障在线监测[J]. 仪器仪表学报, 2009, 30(7):1347-1352. WANG P L, GE Z Q, SONG Z H. Online fault monitoring for batch processes based on adaptive multi-model ICA-SVDD[J]. Chinese Journal of Scientific Instrument, 2009, 30(7):1347-1352.
|
[25] |
GE Z Q, SONG Z H. Bagging support vector data description model for batch process monitoring[J]. Journal of Process Control, 2013, 23(8):1090-1096.
|
[26] |
YAO M, WANG H G, XU W L. Batch process monitoring based on functional data analysis and support vector data description[J]. Journal of Process Control, 2014, 24(7):1085-1097.
|
[27] |
KHEDIRI I B, WEIHS C, LIMAM M. Kernel k-means clustering based local support vector domain description fault detection of multimodal processes[J]. Expert Systems with Applications, 2012, 39(2):2166-2171.
|
[28] |
TAX D M J, DUIN R P W. Support vector data description[J]. Machine Learning, 2004, 54(1):45-66.
|
[29] |
LUO L J, BAO S Y, MAO J F, et al. Fuzzy phase partition and hybrid modeling based quality prediction and process monitoring methods for multiphase batch processes[J]. Industrial & Engineering Chemistry Research, 2016, 55(14):4045-4058.
|
[30] |
BIROL G, ÜNDEY C, CINAR A. A modular simulation package for fed-batch fermentation:penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11):1553-1565.
|