[1] |
HUANG W, CHEN B. Scheduling of batch plants:constraint-based approach and performance investigation[J]. International Journal of Production Economics, 2007, 105(2):425-444.
|
[2] |
MENDEZ C A, JAIME C. State of the art review of optimization methods for short term scheduling of batch processes[J]. Computers & Chemical Engineering, 2006, 30(6):913-946.
|
[3] |
MARAVELIAS C T. A general framework and modeling approach classification for chemical production scheduling[J]. AIChE Journal, 2012, 58(6):1812-1834.
|
[4] |
NIE Y S, LORENZ T B, JOHN M W. Discrete time formulation for the integration of scheduling and dynamic optimization[J]. Ind. Eng. Chem. Res., 2015, 54(16):4303-4315.
|
[5] |
KILIC O A, DONK D P V, WIJNGAARD J. A discrete time formulation for batch processes with storage capacity and storage time limitations[J]. Computers & Chemical Engineering, 2011, 35(4):622-629.
|
[6] |
CASTRO P M, BARBOSA-POVOA A P, MATOS H A, et al. Simple continuous-time formulation for short-term scheduling of batch and continuous processes[J]. Ind. Eng. Chem. Res., 2004, 43(1):105-120.
|
[7] |
LAGZI S, FUKASAWA R, RICARDEZ S L. A multitasking continuous time formulation for short-term scheduling of operations in multipurpose plants[J]. Computers & Chemical Engineering, 2017, 94(2):135-146.
|
[8] |
HAZARAS M J, SWARTZ C L E, MARLIN T E. Industrial application of a continuous-time scheduling framework for process analysis and improvement[J]. Ind. Eng. Chem. Res., 2014, 53(1):259-273.
|
[9] |
SUNDARAMOORTHY A, KARIMⅡ A. A simpler better slot-based continuous-time formulation for short-term scheduling in multipurpose batch plants[J]. Chem. Eng. Sci., 2005, 60(10):2679-2691.
|
[10] |
LAMBA N, KARIMI I A. Scheduling parallel production lines with resource constraints(Ⅰ):Model formulation[J]. Ind. Eng. Chem. Res., 2002, 41(4):790-800.
|
[11] |
LAMBA N, KARIMI I A. Scheduling parallel production lines with resource constraints(Ⅱ):Decomposition algorithm[J]. Ind. Eng. Chem. Res., 2002, 41(4):790-800.
|
[12] |
MARAVELIAS C T, GROSSMANN I E. New general continuous-time state-task network formulation for short-term scheduling of multipurpose batch plants[J]. Ind. Eng. Chem. Res., 2003, 42(19):3056-3074.
|
[13] |
CHU Y F, YOU F Q. Integration of production scheduling and dynamic optimization for multi-product CSTRs:generalized benders decomposition coupled with global mixed-integer fractional programming[J]. Computers & Chemical Engineering, 2013, 58(11):315-333.
|
[14] |
CHEN G H, YAN L X, SHI B. Modeling and optimization for short-term scheduling of multipurpose batch plants[J]. Chinese Journal of Chemical Engineering, 2014, 22(6):682-689.
|
[15] |
SEID R, MAJOZI T. A robust mathematical formulation for multipurpose batch plants[J]. Chem. Eng. Sci., 2012, 68(1):36-58.
|
[16] |
吴建昱, 何小荣, 陈丙珍, 等. 新的多产品间歇生产调度的MILP模型[J]. 化工学报, 2003, 59(9):1252-1255. WU J Y, HE X R, CHEN B Z, et al. A new continuous time MILP model for scheduling of multi-product batch plants[J]. Journal of Chemical Industry and Engineering (China), 2003, 59(9):1252-1255.
|
[17] |
JANAKS L, FLOUDAS C A. Improving unit specific event based continuous-time approaches for batch processes:integrality gap and task splitting[J].Computers & Chemical Engineering, 2008, 32(4/5):913-955.
|
[18] |
HAZARAS M J, SWARTZ C L E, MARLIN T E. Flexible maintenance within a continuous-time state-task network framework[J]. Computers & Chemical Engineering, 2008, 46(11):166-167.
|
[19] |
LOCHMÜLLER M, SCHEMBECKER G. Simultaneous optimization of scheduling, equipment dimensions and operating conditions of sequential multi-purpose batch plants[J]. Computers & Chemical Engineering, 2008, 94(11):157-179.
|
[20] |
SHAIK M A, FLOUDAS C A. Unification of STN and RTN based models for short-term scheduling of batch plants with shared resources[J]. Chemical Engineering Science, 2013, 98(19):104-124.
|
[21] |
SHARIK M A, FLOUDAS C A. Unit-specific-event-based continuous-time approach for short-term scheduling of batch plants using RTN framework[J].Computers & Chemical Engineering, 2008, 32(1/2):260-274.
|
[22] |
CHEN C L, CHANG C Y. A resource-task network approach for optimal short-term/periodic scheduling and heat integration in multipurpose batch plants[J]. Applied Thermal Engineering, 2009, 29(5):1195-1208.
|
[23] |
MONIZ S, BARBOSA-PÓVOA A P, SOUSA J P D. Simultaneous regular and non-regular production scheduling of multipurpose batch plants:a real chemical-pharmaceutical case study[J]. Computers & Chemical Engineering, 2014, 67(15):83-102.
|
[24] |
YEOMANS H, GROSSMANNI E. A systematic modeling framework of superstructure process synthesis[J]. Computers & Chemical Engineering, 1999, 23(6):709-731.
|
[25] |
NIE Y S, LORENZ T B, JOHN M W. Integrated scheduling and dynamic optimization of batch processes using state equipment networks[J]. AIChE Journal, 2012, 58(11):3416-3434.
|
[26] |
SHAIKM A, FLOUDAS C A. Novel unified modeling approach for short-term scheduling[J]. Ind. Eng. Chem. Res., 2009, 48(6):2947-2964.
|
[27] |
VOORADI R, SHAIKM A. Improved three-index unit-specific event-based model for short-term scheduling of batch plants[J]. Computers & Chemical Engineering, 2012, 43(20):148-172.
|
[28] |
VOORADI R, SHAIK M A. Rigorous unit specific event-based model for short-term scheduling of batch plants using conditional sequencing and unit-wait times[J]. Ind. Eng. Chem. Res., 2013, 52(36):12950-12972.
|
[29] |
JANAK S L, FLOUDAS C A. Improving unit-specific event based continuous-time approaches for batch processes:integrality gap and task splitting[J]. Computers & Chemical Engineering, 2008, 32(4/5):913-955.
|
[30] |
KALLRATH J. Planning and scheduling in the process industry[J]. OR Spectrum, 2002, 24(3):219-250.
|