CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 397-407.doi: 10.11949/0438-1157.20221055

• Reviews and monographs • Previous Articles     Next Articles

Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies

Guojuan QU1(), Tao JIANG2, Tao LIU1, Xiang MA2()   

  1. 1.School of Chemical Engineering, East China University of Science and Technology, Shanghai 200030, China
    2.School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200030, China
  • Received:2022-07-27 Revised:2022-11-28 Online:2023-01-05 Published:2023-03-20
  • Contact: Xiang MA E-mail:1414539714@qq.com;maxiang@ecust.edu.cn

Abstract:

Au nanoclusters (AuNCs) stand out in the fields of catalysis, bioimaging, sensing, analytical detection, drug delivery, displaying and illumination owing to their abundant optical properties and unique nanostructures. However, the low quantum yield (QY) and single emissive band seriously hinder the development prospects of most AuNCs, and the preparation of AuNCs with tunable luminescence, high QY, and long luminescent lifetime has become current research focus in this field. Supramolecular strategies such as host-guest inclusion, embedding in polymer matrix, hydrogen bonding and electrostatic interactions have been widely used to control the luminescent behavior of AuNCs and improve their QY. In view of this, this review systematically expounds the mechanism of supramolecular strategies to modulate the luminescent behavior of AuNCs, summarizes the recent research progress in the construction and regulation of multifunctional AuNCs based on supramolecular strategies, and looks forward to the opportunities and challenges in the field of AuNC luminescence.

Key words: nanomaterials, Au nanoclusters, photochemistry, modulate luminescence, supramolecular assembly, nanoparticles

CLC Number: 

  • TQ 050.4

Fig.1

Jablonski diagram for the fundamental photophysical process of AuNCs"

Fig.2

(a) Synthesis of AuNCs@β-CD and loading on the surface of TiO2 NPs to enhance photocatalytic activity and improve the degradation rate of organic pollutants [62]; (b) Synthesis process of β-CD@AuNCs and its detections of dopamine and cholesterol [63-64]; (c) Synthesis process of near-infrared β-CD@AuNCs[65]; (d) Bright near-infrared second region (NIR-Ⅱ) AuNCs synthesized through β-CD as ligand and used to track labeled proteins to realize targeted tumor visualization[66]"

Fig.3

(a) Luminescent nanoswitches constructed based on supramolecular assembly strategy to regulate the luminescence of CC/DTT-AuNCs[75]; (b) Fluorescence-to-phosphorescence switching of molecular AuNCs induced by aggregation[76]; (c) AuNCs@histidine and poly-BrNpA doped into PVA matrix to regulate luminescence[77]; (d) GSH-AuNCs and host-guest supramolecular constructed temperature-humidity dual-responsive luminescent materials through self-assembly strategy[78]"

Fig.4

(a) Enhanced green luminescence of water-soluble ATT-AuNCs through host-guest interaction between ATT-AuNCs and arginine[80]; (b) Brighten FGGC-AuNCs in aqueous solution based on host-guest inclusion strategy between CB and the surface ligands of FGGC-AuNCs[82]; (c) Chitosan mediated Au(0)@Au(Ⅰ)-SG NCs with different luminescence to form reversible gels under supramolecular forces[84]; (d) GSH@AuNCs as cross-linkers to construct hydrogels and utilize their abundant hydrogen bond network structures enhancing the luminescence of GSH@AuNCs[85]"

1 Chen S, Du W J, Qin C W L, et al. Assembly of the thiolated [Au1Ag22(S-adm)12]3+ superatom complex into a framework material through direct linkage by SbF6 - anions[J]. Angewandte Chemie International Edition, 2020, 59(19): 7542-7547.
2 Yang T Q, Dai S, Yang S Q, et al. Interfacial clustering-triggered fluorescence-phosphorescence dual solvoluminescence of metal nanoclusters[J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 3980-3985.
3 Kong Y J, Yan Z P, Li S, et al. Photoresponsive propeller-like chiral AIE copper (‍Ⅰ) clusters[J]. Angewandte Chemie International Edition, 2020, 59(13): 5336-5340.
4 Jin L H, Shi L L, Shi W, et al. Fluorescence lifetime-based pH sensing by platinum nanoclusters[J]. Analyst, 2019, 144(11): 3533-3538.
5 Song Y B, Li Y W, Zhou M, et al. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature[J]. Science Advances, 2021, 7(2): eabd2091.
6 Zhang M M, Dong X Y, Wang Z Y, et al. Alkynyl-stabilized superatomic silver clusters showing circularly polarized luminescence[J]. Journal of the American Chemical Society, 2021, 143(16): 6048-6053.
7 Zheng W Y, Zhou B, Ren Z J, et al. Fluorescence-phosphorescence manipulation and atom probe observation of fully inorganic silver quantum clusters: imitating from and behaving beyond organic hosts[J]. Advanced Optical Materials, 2022, 10(2): 2101632.
8 Wang S S, Wang Y Y, Peng Y, et al. Exploring the antibacteria performance of multicolor Ag, Au, and Cu nanoclusters[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8461-8469.
9 George A, Maman M P, Bhattacharyya K, et al. Aggregation induced non-emissive-to-emissive switching of molecular platinum clusters[J]. Nanoscale, 2019, 11(13): 5914-5919.
10 Zhang C X, Gao Y C, Li H W, et al. Gold-platinum bimetallic nanoclusters for oxidase-like catalysis[J]. ACS Applied Nano Materials, 2020, 3(9): 9318-9328.
11 Han Z, Dong X Y, Luo P, et al. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency[J]. Science Advances, 2020, 6(6): eaay0107.
12 Wang C, Wang C X, Xu L, et al. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis[J]. Nanoscale, 2014, 6(3): 1775-1781.
13 Mishra S K, Raveendran S, Ferreira J M F, et al. In situ impregnation of silver nanoclusters in microporous chitosan-PEG membranes as an antibacterial and drug delivery percutaneous device[J]. Langmuir, 2016, 32(40): 10305-10316.
14 Zhang X D, Luo Z T, Chen J, et al. Ultrasmall Au10-12(SG)10-12 nanomolecules for high tumor specificity and cancer radiotherapy[J]. Advanced Materials, 2014, 26(26): 4565-4568.
15 Xu J, Sun F Y, Li Q, et al. Ultrasmall gold nanoclusters-enabled fabrication of ultrafine gold aerogels as novel self-supported nanozymes[J]. Small, 2022, 18(21): 2200525.
16 Sun Y N, Cai X, Hu W G, et al. Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters[J]. Science China Chemistry, 2021, 64(7): 1065-1075.
17 Liu H L, Hong G S, Luo Z T, et al. Atomic-precision gold clusters for NIR-Ⅱ imaging[J]. Advanced Materials, 2019, 31(46): 1901015.
18 Wang J, Wang Z Y, Li S J, et al. Carboranealkynyl-protected gold nanoclusters: size conversion and UV/vis-NIR optical properties[J]. Angewandte Chemie International Edition, 2021, 60(11): 5959-5964.
19 Li Z, Peng H B, Liu J L, et al. Plant protein-directed synthesis of luminescent gold nanocluster hybrids for tumor imaging[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 83-90.
20 Goswami U, Basu S, Paul A, et al. White light emission from gold nanoclusters embedded bacterial[J]. Journal of Materials Chemistry C, 2017, 5(47): 12360-12364.
21 Wei Y F, Luan W L, Gao F, et al. Supramolecules-guided synthesis of brightly near-infrared Au22 nanoclusters with aggregation-induced emission for bioimaging[J]. Particle & Particle Systems Characterization, 2019, 36(12): 1900314.
22 Yu Q, Gao P L, Zhang K Y, et al. Luminescent gold nanocluster-based sensing platform for accurate H2S detection in vitro and in vivo with improved anti-interference[J]. Light: Science & Applications, 2017, 6(12): e17107.
23 Londoño-Larrea P, Vanegas J P, Cuaran-Acosta D, et al. Water-soluble naked gold nanoclusters are not luminescent[J]. Chemistry-A European Journal, 2017, 23(34): 8137-8141.
24 Yu F F, Cao Z, He S Y, et al. Highly luminescent gold nanocluster assemblies for bioimaging in living organisms[J]. Chemical Communications, 2022, 58(6): 811-814.
25 Wang H B, Mao A L, Tao B B, et al. L-histidine-DNA interaction: a strategy for the improvement of the fluorescence signal of poly(adenine) DNA-templated gold nanoclusters[J]. Microchimica Acta, 2021, 188: 198.
26 Yang W M, Yang H F, Ding W H, et al. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method[J]. Ultrasonics Sonochemistry, 2016, 33: 106-117.
27 Zhou B, Yan D P. Simultaneous long-persistent blue luminescence and high quantum yield within 2D organic-metal halide perovskite micro/nanosheets[J]. Angewandte Chemie International Edition, 2019, 58(42): 15128-15135.
28 Cheng W, Wang L D, Zhou Y Y, et al. Blue iridium(Ⅲ) complexes with high internal quantum efficiency based on 4-(pyridin-3-yl)pyrimidine derivative and their electroluminescent properties[J]. Dyes and Pigments, 2020, 177: 108257.
29 You Q, Chen Y. Ultrabright, highly heat-stable gold nanoclusters through functional ligands and hydrothermally-induced luminescence enhancement[J]. Journal of Materials Chemistry C, 2018, 6(36): 9703-9712.
30 Khan I M, Niazi S, Yu Y, et al. Aptamer induced multicolored AuNCs-WS2 “turn on” FRET nano platform for dual-color simultaneous detection of aflatoxinB1 and zearalenone[J]. Analytical Chemistry, 2019, 91(21): 14085-14092.
31 Lin J H, Chen S J, Lee J E, et al. The detection of mercury(Ⅱ) ions using fluorescent gold nanoclusters on a portable paper-based device[J]. Chemical Engineering Journal, 2022, 430(4): 133070.
32 Roberts P, Perry J K, Gupta R K, et al. Confinement-enhanced luminescence in protein-gold nanoclusters[J]. The Journal of Physical Chemistry Letters, 2020, 11(23): 10278-10282.
33 Deng H H, Huang K Y, Xiu L F, et al. Bis-schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level[J]. Nature Communications, 2022, 13: 3381.
34 Huang H Y, Ca K B, Io C C, et al. Electronically coupled gold nanoclusters render deep-red emission with high quantum yields[J]. The Journal of Physical Chemistry Letters, 2020, 11(21): 9344-9350.
35 Wang Z P, Zhu Z L, Zhao C K, et al. Silver doping-induced luminescence enhancement and red-shift of gold nanoclusters with aggregation-induced emission[J]. Chemistry-An Asian Journal, 2019, 14(6): 765-769.
36 Bai X L, Xu S Y, Wang L Y. Full-range pH stable Au-clusters in nanogel for confinement-enhanced emission and improved sulfide sensing in living cells[J]. Analytical Chemistry, 2018, 90(5): 3270-3275.
37 Pramanik G, Kvakova K, Thottappali M A, et al. Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters[J]. Nanoscale, 2021, 13(23): 10462-10467.
38 Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles[J]. Chemical Reviews, 2017, 117(12): 8208-8271.
39 Chen Y, Montana D M, Wei H, et al. Shortwave infrared in vivo imaging with gold nanoclusters[J]. Nano Letters, 2017, 17(10): 6330-6334.
40 Jin R C, Zeng C J, Zhou M, et al. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities[J]. Chemical Reviews, 2016, 116(18): 10346-10413.
41 Bigioni T P, Whetten R L, Dag Ö. Near-infrared luminescence from small gold nanocrystals[J]. The Journal of Physical Chemistry B, 2000, 104(30): 6983-6986.
42 Fernando A, Weerawardene K L D M, Karimova N V, et al. Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters[J]. Chemical Reviews, 2015, 115(12): 6112-6216.
43 Negishi Y C, Nobusada K, Tsukuda T. Glutathione-protected gold clusters revisited: bridging the gap between gold(Ⅰ)-thiolate complexes and thiolate-protected gold nanocrystals[J]. Journal of the American Chemical Society, 2005, 127(14): 5261-5270.
44 Pramanik G, Humpolickova J, Valenta J, et al. Gold nanoclusters with bright near-infrared photoluminescence[J]. Nanoscale, 2018, 10: 3792-3798.
45 Pyo K, Thanthirige V D, Kwak K, et al. Ultrabright luminescence from gold nanoclusters: rigidifying the Au(Ⅰ)-thiolate shell[J]. Journal of the American Chemical Society, 2015, 137(25): 8244-8250.
46 Wu Z N, Liu H W, Li T T, et al. Contribution of metal defects in the assembly induced emission of Cu nanoclusters[J]. Journal of the American Chemical Society, 2017, 139(12): 4318-4321.
47 Luo Z T, Yuan X, Yu Y, et al. From aggregation-induced emission of Au(Ⅰ)-thiolate complexes to ultrabright Au(0)@Au(Ⅰ)-thiolate core-shell nanoclusters[J]. Journal of the American Chemical Society, 2012, 134(40): 16662-16670.
48 Aikens C M. Electronic and geometric structure, optical properties, and excited state behavior in atomically precise thiolate-stabilized noble metal nanoclusters[J]. Accounts of Chemical Research, 2018, 51(12): 3065-3073.
49 Weerawardene K L D M, Aikens C M. Theoretical insights into the origin of photoluminescence of Au25(SR)18 - nanoparticles[J]. Journal of the American Chemical Society, 2016, 138(35): 11202-11210.
50 Li Q, Zhou M, So W Y, et al. A mono-cuboctahedral series of gold nanoclusters: photoluminescence origin, large enhancement, wide tunability and structure-property correlation[J]. Journal of the American Chemical Society, 2019, 141(13): 5314-5325.
51 Yang B, Wu H, Zhao L. Photoluminescence enhancement by controllable aggregation and polymerization of octanuclear gold clusters[J]. Chemical Communications, 2021, 57(47): 5770-5773.
52 Soldan G, Aljuhani M A, Bootharaju M S, et al. Gold doping of silver nanoclusters: a 26-fold enhancement in the luminescence quantum yield[J]. Angewandte Chemie International Edition, 2016, 55(19): 5749-5753.
53 Ito S, Takano S, Tsukuda T. Alkynyl-protected Au22(C ≡≡ CR)18 clusters featuring new interfacial motifs and R-dependent photoluminescence[J]. The Journal of Physical Chemistry Letters, 2019, 10(21): 6892-6896.
54 Mohanty J S, Chaudhari K, Sudhakar C, et al. Metal-ion-induced luminescence enhancement in protein protected gold clusters[J]. The Journal of Physical Chemistry C, 2019, 123(47): 28969-28976.
55 Chang H, Karan N S, Shin K, et al. Highly fluorescent gold cluster assembly[J]. Journal of the American Chemical Society, 2021, 143(1): 326-334.
56 Chandra S, Nonappa, Beaune G, et al. Highly luminescent gold nanocluster frameworks[J]. Advanced Optical Materials, 2019, 7(20): 1900620.
57 Li B Z, Wang X, Shen X, et al. Aggregation-induced emission from gold nanoclusters for use as a luminescence-enhanced nanosensor to detect trace amounts of silver ions[J]. Journal of Colloid and Interface Science, 2016, 467: 90-96.
58 Liu J X, Feng J, Yu Y, et al. Fabrication of a luminescent supramolecular hydrogel based on the AIE strategy of gold nanoclusters and their application as a luminescence switch[J]. The Journal of Physical Chemistry C, 2020, 124(43): 23844-23851.
59 Zhang T, Wang C Y, Ma X. Metal-free room-temperature phosphorescent systems for pure white-light emission and latent fingerprint visualization[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 7778-7785.
60 Zhang W S, Lin D M, Wang H X, et al. Supramolecular self-assembly bioinspired synthesis of luminescent gold nanocluster-embedded peptide nanofibers for temperature sensing and cellular imaging[J]. Bioconjugate Chemistry, 2017, 28(9): 2224-2229.
61 Shen J L, Bi Y, Liu B H, et al. Co-assembly of gold nanocluster with imidazolium surfactant into ordered luminescent fibers based on aggregation induced emission strategy[J]. Journal of Molecular Liquids, 2019, 291: 111275.
62 Zhu H G, Goswami N, Yao Q F, et al. Cyclodextrin-gold nanocluster decorated TiO2 enhances photocatalytic decomposition of organic pollutants[J]. Journal of Materials Chemistry A, 2018, 6(3): 1102-1108.
63 Halawa M I, Wu F, Fereja T H, et al. One-pot green synthesis of supramolecular β-cyclodextrin functionalized gold nanoclusters and their application for highly selective and sensitive fluorescent detection of dopamine[J]. Sensors and Actuators B: Chemical, 2018, 254: 1017-1024.
64 Xiao W X, Yang Z Z, Liu J, et al. Sensitive cholesterol determination by β-cyclodextrin recognition based on fluorescence enhancement of gold nanoclusters[J]. Microchemical Journal, 2022, 175: 107125.
65 Li W J, Wang X, Jiang T, et al. One-pot synthesis of β-cyclodextrin modified Au nanoclusters with near-infrared emission[J]. Chemical Communications, 2020, 56(42): 5580-5583.
66 Song X R, Zhu W, Ge X G, et al. A new class of NIR-Ⅱ gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging[J]. Angewandte Chemmie International Edition, 2021, 60(3): 1306-1312.
67 Liu X W, Hou X Q, Li Z, et al. Water-soluble amino pillar[5]arene functionalized gold nanoclusters as fluorescence probes for the sensitive determination of dopamine[J]. Microchemical Journal, 2019, 150: 104084.
68 Wang X, Wu J R, Liang F, et al. In situ gold nanoparticle synthesis mediated by a water-soluble leaning pillar[6]arene for self-assembly, detection, and catalysis[J]. Organic Letters, 2019, 21(13): 5215-5218.
69 Tan L L, Wei M Y, Shang L, et al. Cucurbiturils-mediated noble metal nanoparticles for applications in sensing, SERS, theranostics, and catalysis[J]. Advanced Functional Materials, 2021, 31(1): 2007277.
70 Nigra M M, Yeh A J, Okrut A, et al. Accessible gold clusters using calix[4]arene N-heterocyclic carbene and phosphine ligands[J]. Dalton Transactions, 2013, 42(35): 12762-12771.
71 Chen X, Häkkinen H. Protected but accessible: oxygen activation by a calixarene-stabilized undecagold cluster[J]. Journal of the American Chemical Society, 2013, 135(35): 12944-12947.
72 Yang H W, Lu F N, Sun Y, et al. Fluorescent gold nanocluster-based sensor array for nitrophenol isomer discrimination via an integration of host-guest interaction and inner filter effect[J]. Analytical Chemistry, 2018, 90(21): 12846-12853.
73 Wang Y Y, Guo H G, Zhang Y X, et al. Achieving highly water-soluble and luminescent gold nanoclusters modified by β-cyclodextrin as multifunctional nanoprobe for biological applications[J]. Dyes and Pigments, 2018, 157: 359-368.
74 Ding S N, Li C M, Bao N. Off-on phosphorescence assay of heparin via gold nanoclusters modulated with protamine[J]. Biosensors and Bioelectronics, 2015, 64: 333-337.
75 Huang K Y, Fang Q H, Sun W M, et al. Cucurbit[n]uril supramolecular assemblies-regulated charge transfer for luminescence switching of gold nanoclusters[J]. The Journal of Physical Chemistry Letters, 2022, 13(1): 419-426.
76 Sugiuchi M, Maeba J, Okubo N, et al. Aggregation-induced fluorescence-to-phosphorescence switching of molecular gold clusters[J]. Journal of the American Chemical Society, 2017, 139(49): 17731-17734.
77 Wang X, Xu Y, Ma X, et al. Multicolor photoluminescence of a hybrid film via the dual-emitting strategy of an inorganic fluorescent Au nanocluster and an organic room-temperature phosphorescent copolymer[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2866-2872.
78 Jiang T, Wang X, Wang J, et al. Humidity- and temperature-tunable multicolor luminescence of cucurbit[8]uril-based supramolecular assembly[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14399-14407.
79 Tian R, Zhang S T, Li M W, et al. Localization of Au nanoclusters on layered double hydroxides nanosheets: confinement-induced emission enhancement and temperature-responsive luminescence[J]. Advanced Functional Materials, 2015, 25(31): 5006-5015.
80 Deng H H, Shi X Q, Wang F F, et al. Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host-guest recognition[J]. Chemistry of Materials, 2017, 29(3): 1362-1369.
81 Zhu H S, Li J, Wang J, et al. Lighting up the gold nanoclusters via host-guest recognition for high-efficiency antibacterial performance and imaging[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36831-36838.
82 Jiang T, Qu G J, Wang J, et al. Cucurbiturils brighten Au nanoclusters in water[J]. Chemical Science, 2020, 11(13): 3531-3537.
83 Qu G J, Jiang T, Liu T, et al. Multifunctional host polymers assist Au nanoclusters achieve high quantum yield and mitochondrial imaging[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 2023-2028.
84 Goswami N, Lin F X, Liu Y B, et al. Highly luminescent thiolated gold nanoclusters impregnated in nanogel[J]. Chemistry of Materials, 2016, 28(11): 4009-4016.
85 Qu G J, Jiang T, Li W J, et al. Emission enhancement and self-healing of a hybrid hydrogel employing Au nanoclusters as cross-linkers[J]. Dyes and Pigments, 2021, 188: 109211.
86 Han X S, Luan X Q, Su H F, et al. Structure determination of alkynyl-protected gold nanocluster Au22(tBuC≡≡ C)18 and its thermochromic luminescence[J]. Angewandte Chemie International Edition, 2020, 59(6): 2309-2312.
87 Chevrier D M, Thanthirige V D, Luo Z, et al. Structure and formation of highly luminescent protein-stabilized gold clusters[J]. Chemical Science, 2018, 9(10): 2782-2790.
88 Wu L L, Fang W H, Chen X B. The Photoluminescence mechanism of ultra-small gold clusters[J]. Physical Chemistry Chemical Physics, 2016, 18(26): 17320-17325.
89 Peng Y W, Cao L, Pidamaimaiti G, et al. Facile construction of highly luminescent and biocompatible gold nanoclusters by shell rigidification for two-photon pH-edited cytoplasmic and in vivo imaging[J]. Nanoscale, 2022, 14(23): 8342-8348.
90 Weerawardene K L D M, Aikens C M. Origin of photoluminescence of Ag25(SR)18-nanoparticles: ligand and doping effect[J]. The Journal of Physical Chemistry C, 2018, 122(4): 2440-2447.
91 Wang X Y, Zhang J, Yin J, et al. More is better: aggregation induced luminescence and exceptional chirality and circularly polarized luminescence of chiral gold clusters[J]. Materials Chemistry Frontiers, 2021, 5(1): 368-374.
92 Santiago-González B, Vázquez-Vázquez C, Blanco-Varela M C, et al. Synthesis of water-soluble gold clusters in nanosomes displaying robust photoluminescence with very large stokes shift[J]. Journal of Colloid and Interface Science, 2015, 455: 154-162.
[1] Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341.
[2] Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468.
[3] Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364.
[4] Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086.
[5] Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801.
[6] Xiaobing JU, Xuechun LI, Fang SUN. Effect on dithiosalicylic acid derivative on properties of photocuring materials [J]. CIESC Journal, 2022, 73(9): 4187-4193.
[7] Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827.
[8] Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646.
[9] Lin PENG, Mingxin NIU, Yu BAI, Kening SUN. Preparation of hollow sulfur spheres-MoS2/rGO composite and its application in lithium-sulfur batteries [J]. CIESC Journal, 2022, 73(8): 3688-3698.
[10] Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719.
[11] Xiaoya LIU, Jinchao WANG, Ying LIU, Jinghuan MA. Progress in modified preparation and catalytic mechanism of nanocatalysts for hydrogen production from hydrous hydrazine [J]. CIESC Journal, 2022, 73(7): 2819-2834.
[12] Hongrui ZHANG, Tian ZHANG, Xizi LONG, Xianning LI. Degradation characteristics of Cu-EDTA by coupling of photocatalysis and microbial fuel cell [J]. CIESC Journal, 2022, 73(5): 2149-2157.
[13] Qingyi LIU, Tong XIAO, Wenjie SUN, Jiahao ZHANG, Changhui LIU. Progress in the research of phase change energy storage enhanced by titanium dioxide nanoparticles [J]. CIESC Journal, 2022, 73(5): 1863-1882.
[14] Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435.
[15] Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!