CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 981-994.DOI: 10.11949/0438-1157.20221489
• Reviews and monographs • Previous Articles Next Articles
Ruizhe CHEN1,2,3(), Leilei CHENG1,2,3, Jing GU2,3, Haoran YUAN1,2,3(), Yong CHEN1,2,3
Received:
2022-11-15
Revised:
2023-02-11
Online:
2023-04-19
Published:
2023-03-05
Contact:
Haoran YUAN
陈瑞哲1,2,3(), 程磊磊1,2,3, 顾菁2,3, 袁浩然1,2,3(), 陈勇1,2,3
通讯作者:
袁浩然
作者简介:
陈瑞哲(1999—)男,硕士研究生,crz4212@163.com
基金资助:
CLC Number:
Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites[J]. CIESC Journal, 2023, 74(3): 981-994.
陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994.
回收技术 | 优势 | 劣势 |
---|---|---|
填埋处理 | 过程简单,处理成本低 | 危害环境,浪费废弃物资源 |
能量回收 | 不限制材料种类 | 碳排放量大,无法回收高性能纤维 |
物理回收 | 可回收得到短纤维制品,适合大规模生产应用 | 回收产物价值较低,对可回收的废弃物种类有限制 |
化学回收 | 有效回收树脂并较大程度地保持回收纤维的性能, 对环境危害小 | 处理程序复杂,成本较高,产物较为复杂,缺乏低耗高效的 全资源化回收技术 |
Table 1 Various recycling technologies of FRPC
回收技术 | 优势 | 劣势 |
---|---|---|
填埋处理 | 过程简单,处理成本低 | 危害环境,浪费废弃物资源 |
能量回收 | 不限制材料种类 | 碳排放量大,无法回收高性能纤维 |
物理回收 | 可回收得到短纤维制品,适合大规模生产应用 | 回收产物价值较低,对可回收的废弃物种类有限制 |
化学回收 | 有效回收树脂并较大程度地保持回收纤维的性能, 对环境危害小 | 处理程序复杂,成本较高,产物较为复杂,缺乏低耗高效的 全资源化回收技术 |
树脂 | 纤维 | |||
---|---|---|---|---|
种类 | 聚合物类型 | 结构特性 | 种类 | 结构特性 |
环氧树脂 | 热固性 | 含两个或两个以上环氧基团 | 玻璃纤维 | 含有SiO2、Na2O、CaO、Al2O3 |
酚醛树脂 | 热固性 | 酚类与醛类(苯酚、甲醛)聚合而成 | 碳纤维 | 含碳量高于90% |
不饱和聚酯树脂 | 热固性 | 单体为二元酸与二元醇 | 硼纤维 | 芯材为金属丝(钨丝),中间层为硼,表层为涂层 |
聚烯烃 | 热塑性 | 烯烃分子聚合而成 | 玄武岩纤维 | 玄武岩石料高温熔融后拉制而成连续纤维 |
聚酰胺 | 热塑性 | 含有酰胺基团 | 芳纶纤维 | 间位芳纶纤维:锯齿状分子链 对位芳纶纤维:直线状分子链 |
聚碳酸酯 | 热塑性 | 含碳酸酯基 | ||
聚乙烯纤维 | 聚乙烯熔融纺丝制成 |
Table 2 Properties of various resins and fibers
树脂 | 纤维 | |||
---|---|---|---|---|
种类 | 聚合物类型 | 结构特性 | 种类 | 结构特性 |
环氧树脂 | 热固性 | 含两个或两个以上环氧基团 | 玻璃纤维 | 含有SiO2、Na2O、CaO、Al2O3 |
酚醛树脂 | 热固性 | 酚类与醛类(苯酚、甲醛)聚合而成 | 碳纤维 | 含碳量高于90% |
不饱和聚酯树脂 | 热固性 | 单体为二元酸与二元醇 | 硼纤维 | 芯材为金属丝(钨丝),中间层为硼,表层为涂层 |
聚烯烃 | 热塑性 | 烯烃分子聚合而成 | 玄武岩纤维 | 玄武岩石料高温熔融后拉制而成连续纤维 |
聚酰胺 | 热塑性 | 含有酰胺基团 | 芳纶纤维 | 间位芳纶纤维:锯齿状分子链 对位芳纶纤维:直线状分子链 |
聚碳酸酯 | 热塑性 | 含碳酸酯基 | ||
聚乙烯纤维 | 聚乙烯熔融纺丝制成 |
化学名称 | 结构特性 | 回收利用 | 文献 |
---|---|---|---|
玻璃纤维增强聚丙烯 | 改性GF表面会发生化学反应,产生接枝共聚物,共聚物分散纠缠于聚丙烯高分子链中,形成复杂结构 | 聚丙烯热解可得热解油或蜡,回收GF可做增强材料 | [ |
玻璃纤维增强酚醛树脂 | 固化过程首先进行凝胶化,再进行交联固化。固化时,在酚核之间形成亚甲基键和醚键 | 在含碳热解气中,钴基催化剂可催化酚醛树脂生成 CF和碳纳米管 | [ |
碳纤维增强环氧树脂 | CF力学性能优良,改性可进一步提高增强体与基体间的浸润性,有利于化学键形成,提高增强体与基体间的固化交联度 | 化学回收法可以得到干净的CF,回收CF的拉伸强度保持率可达95%,环氧树脂可以降解为苯或苯酚的衍生物 | [ |
芳纶纤维增强环氧树脂 | 芳纶纤维经过表面改性可以提高机械绞合程度,表面官能团增多,表面能增大,纤维与树脂的结合强度提高 | 热解得到热解气和热解油 | [ |
Table 3 The characteristics and recovery of FRPC
化学名称 | 结构特性 | 回收利用 | 文献 |
---|---|---|---|
玻璃纤维增强聚丙烯 | 改性GF表面会发生化学反应,产生接枝共聚物,共聚物分散纠缠于聚丙烯高分子链中,形成复杂结构 | 聚丙烯热解可得热解油或蜡,回收GF可做增强材料 | [ |
玻璃纤维增强酚醛树脂 | 固化过程首先进行凝胶化,再进行交联固化。固化时,在酚核之间形成亚甲基键和醚键 | 在含碳热解气中,钴基催化剂可催化酚醛树脂生成 CF和碳纳米管 | [ |
碳纤维增强环氧树脂 | CF力学性能优良,改性可进一步提高增强体与基体间的浸润性,有利于化学键形成,提高增强体与基体间的固化交联度 | 化学回收法可以得到干净的CF,回收CF的拉伸强度保持率可达95%,环氧树脂可以降解为苯或苯酚的衍生物 | [ |
芳纶纤维增强环氧树脂 | 芳纶纤维经过表面改性可以提高机械绞合程度,表面官能团增多,表面能增大,纤维与树脂的结合强度提高 | 热解得到热解气和热解油 | [ |
热解气 | 含量/% | ||
---|---|---|---|
500℃ | 550℃ | 600℃ | |
H2 | 5.8 | 7.5 | 11.5 |
CH4 | 10.6 | 15.4 | 20.7 |
CO | 24.2 | 24.0 | 21.8 |
CO2 | 32.6 | 26.0 | 20.4 |
C2H4 | 4.8 | 5.0 | 5.2 |
C2H6 | 2.8 | 3.3 | 3.7 |
C3 | 1.4 | 1.4 | 1.3 |
C4 | 2.6 | 2.7 | 2.5 |
其他 | 15.2 | 14.7 | 12.9 |
Table 4 Chemical compositions of GF-reinforced polyester composites with pyrolysis gas at different temperatures
热解气 | 含量/% | ||
---|---|---|---|
500℃ | 550℃ | 600℃ | |
H2 | 5.8 | 7.5 | 11.5 |
CH4 | 10.6 | 15.4 | 20.7 |
CO | 24.2 | 24.0 | 21.8 |
CO2 | 32.6 | 26.0 | 20.4 |
C2H4 | 4.8 | 5.0 | 5.2 |
C2H6 | 2.8 | 3.3 | 3.7 |
C3 | 1.4 | 1.4 | 1.3 |
C4 | 2.6 | 2.7 | 2.5 |
其他 | 15.2 | 14.7 | 12.9 |
热解油 | 含量/(g/L) | ||
---|---|---|---|
500℃ | 550℃ | 600℃ | |
苯 | 3.4 | 9.5 | 6.8 |
甲苯 | 15.0 | 31.1 | 27.3 |
乙苯 | 16.7 | 30.0 | 21.5 |
苯乙烯 | 7.9 | 13.7 | 13.6 |
Table 5 Contents of benzene, toluene, ethylbenzene and styrene in pyrolysis oil of GF-reinforced polyester composites at different temperatures
热解油 | 含量/(g/L) | ||
---|---|---|---|
500℃ | 550℃ | 600℃ | |
苯 | 3.4 | 9.5 | 6.8 |
甲苯 | 15.0 | 31.1 | 27.3 |
乙苯 | 16.7 | 30.0 | 21.5 |
苯乙烯 | 7.9 | 13.7 | 13.6 |
流体 | 临界温度/℃ | 临界压力/ MPa |
---|---|---|
水 | 373.95 | 22.06 |
甲醇 | 239.45 | 8.10 |
乙醇 | 240.85 | 6.14 |
丙醇 | 263.65 | 5.20 |
丙酮 | 234.85 | 4.80 |
CO2 | 31.26 | 7.38 |
Table 6 Most used super and subcritical fluids
流体 | 临界温度/℃ | 临界压力/ MPa |
---|---|---|
水 | 373.95 | 22.06 |
甲醇 | 239.45 | 8.10 |
乙醇 | 240.85 | 6.14 |
丙醇 | 263.65 | 5.20 |
丙酮 | 234.85 | 4.80 |
CO2 | 31.26 | 7.38 |
回收方法 | 试剂、设备 | 工艺参数 | 纤维性能 | 文献 |
---|---|---|---|---|
高温热解 | 固定床反应器 | N2气氛500℃下热解,保持1 h;空气气氛500℃下氧化 | 抗拉强度:3270 MPa 模量:230000 MPa 抗拉强度保持率:93% | [ |
流化床热解 | 流化床反应器, 0.85 mm沙粒 | 空气气氛450℃下热解 | 抗拉强度:285 MPa 模量:(227100±32300) MPa 抗拉强度保持率:73% | [ |
微波热解 | 微波炉 | N2气氛3 kW功率下通电8 s | 抗拉强度:3260 MPa 模量:210000 MPa 抗拉强度保持率:80% | [ |
超临界流体 | 正丙醇 | 压力5.2 MPa,温度310℃,保持20 min | 抗拉强度:4325 MPa 模量:(213200±11600) MPa 抗拉强度保持率:99% | [ |
溶剂溶解 | 硝酸、聚乙二醇、KOH | 室温下硝酸预处理,然后在160℃下的聚乙二醇和 KOH混合液中反应200 min | 抗拉强度:3890 MPa 模量:173790 MPa 抗拉强度保持率:96% | [ |
电化学回收 | KOH、NaCl电解液 | 75℃,电流40 mA,反应36 h | 抗拉强度:4152 MPa 抗拉强度保持率:89.83% | [ |
Table 7 Process and performance of CF recovery by pyrolysis and solvolysis methods
回收方法 | 试剂、设备 | 工艺参数 | 纤维性能 | 文献 |
---|---|---|---|---|
高温热解 | 固定床反应器 | N2气氛500℃下热解,保持1 h;空气气氛500℃下氧化 | 抗拉强度:3270 MPa 模量:230000 MPa 抗拉强度保持率:93% | [ |
流化床热解 | 流化床反应器, 0.85 mm沙粒 | 空气气氛450℃下热解 | 抗拉强度:285 MPa 模量:(227100±32300) MPa 抗拉强度保持率:73% | [ |
微波热解 | 微波炉 | N2气氛3 kW功率下通电8 s | 抗拉强度:3260 MPa 模量:210000 MPa 抗拉强度保持率:80% | [ |
超临界流体 | 正丙醇 | 压力5.2 MPa,温度310℃,保持20 min | 抗拉强度:4325 MPa 模量:(213200±11600) MPa 抗拉强度保持率:99% | [ |
溶剂溶解 | 硝酸、聚乙二醇、KOH | 室温下硝酸预处理,然后在160℃下的聚乙二醇和 KOH混合液中反应200 min | 抗拉强度:3890 MPa 模量:173790 MPa 抗拉强度保持率:96% | [ |
电化学回收 | KOH、NaCl电解液 | 75℃,电流40 mA,反应36 h | 抗拉强度:4152 MPa 抗拉强度保持率:89.83% | [ |
公司 | 地点 | 回收方法 | 回收能力/(t/a) |
---|---|---|---|
Carbon Conversions Inc | 美国 | 高温热解法 | 2000 |
CFK Valley Stade Recycling GmbH & Co. KG | 德国 | 高温热解法 | 1000 |
ELG Carbon Fibre | 英国 | 高温热解法 | 2000 |
KARBOREK RCF | 意大利 | 高温热解法 | 1000 |
SGL Automotive Carbon Fibres | 美国 | 高温热解法 | 1500 |
Toray Industries | 日本 | 高温热解法 | 1000 |
University of Nottingham | 英国 | 流化床热解法 | 12 |
Hitachi Chemical | 日本 | 超临界流体法 | 12 |
V-Carbon | 美国 | 溶剂溶解法 | 1.7 |
Table 8 Current CF composite recycling companies
公司 | 地点 | 回收方法 | 回收能力/(t/a) |
---|---|---|---|
Carbon Conversions Inc | 美国 | 高温热解法 | 2000 |
CFK Valley Stade Recycling GmbH & Co. KG | 德国 | 高温热解法 | 1000 |
ELG Carbon Fibre | 英国 | 高温热解法 | 2000 |
KARBOREK RCF | 意大利 | 高温热解法 | 1000 |
SGL Automotive Carbon Fibres | 美国 | 高温热解法 | 1500 |
Toray Industries | 日本 | 高温热解法 | 1000 |
University of Nottingham | 英国 | 流化床热解法 | 12 |
Hitachi Chemical | 日本 | 超临界流体法 | 12 |
V-Carbon | 美国 | 溶剂溶解法 | 1.7 |
1 | Rubino F, Nisticò A, Tucci F, et al. Marine application of fiber reinforced composites: a review[J]. Journal of Marine Science and Engineering, 2020, 8(1): 26. |
2 | Koumoulos E, Trompeta A F, Santos R M, et al. Research and development in carbon fibers and advanced high-performance composites supply chain in Europe: a roadmap for challenges and the industrial uptake[J]. Journal of Composites Science, 2019, 3(3): 86. |
3 | Effing M. Expert insights in Europe's booming composites market[J]. Reinforced Plastics, 2018, 62(4): 219-223. |
4 | Navarro C A, Giffin C R, Zhang B Y, et al. A structural chemistry look at composites recycling[J]. Materials Horizons, 2020, 7(10): 2479-2486. |
5 | 丁江浩, 龚裕, 杨飞华, 等. 热固性树脂复合材料回收方法研究进展[J]. 现代化工, 2020, 40(3): 22-25. |
Ding J H, Gong Y, Yang F H, et al. Research progress on recovery methods of thermosetting resin composites[J]. Modern Chemical Industry, 2020, 40(3): 22-25. | |
6 | Tapper R J, Longana M L, Yu H N, et al. Development of a closed-loop recycling process for discontinuous carbon fibre polypropylene composites[J]. Composites Part B: Engineering, 2018, 146: 222-231. |
7 | 薛山. 纤维增强热固性复合材料废弃物回收处理技术及产业化现状[J]. 有色冶金节能, 2021, 37(6): 55-59. |
Xue S. Recycling technology and industrialization of fiber-reinforced thermoset composites waste[J]. Energy Saving of Nonferrous Metallurgy, 2021, 37(6): 55-59. | |
8 | 郭强, 徐恒元, 何凯, 等. 树脂基复合材料废弃物回收再利用现状及发展趋势[J]. 材料导报, 2019, 33(S2): 634-638. |
Guo Q, Xu H Y, He K, et al. Recycling status and development trend of resin matrix composites wastes[J]. Materials Reports, 2019, 33(S2): 634-638. | |
9 | 宋守许, 胡健, 石磊, 等. 基于机械物理法的废旧热固性酚醛树脂回收工艺的试验研究[J]. 中国机械工程, 2013, 24(1): 29-34. |
Song S X, Hu J, Shi L, et al. Research on recycling technology of waste thermosetting phenolic resins based on mechanical physical method[J]. China Mechanical Engineering, 2013, 24(1): 29-34. | |
10 | Guo J, Tang Y N, Xu Z M. Wood plastic composite produced by nonmetals from pulverized waste printed circuit boards[J]. Environmental Science & Technology, 2010, 44(1): 463-468. |
11 | Guo J Y, Guo J, Xu Z M. Recycling of non-metallic fractions from waste printed circuit boards: a review[J]. Journal of Hazardous Materials, 2009, 168(2/3): 567-590. |
12 | Sharma R, Bansal P P. Use of different forms of waste plastic in concrete—a review[J]. Journal of Cleaner Production, 2016, 112: 473-482. |
13 | Kumar S, Krishnan S. Recycling of carbon fiber with epoxy composites by chemical recycling for future perspective: a review[J]. Chemical Papers, 2020, 74(11): 3785-3807. |
14 | Korniejenko K, Kozub B, Bąk A, et al. Tackling the circular economy challenges—composites recycling: used tyres, wind turbine blades, and solar panels[J]. Journal of Composites Science, 2021, 5(9): 243. |
15 | Krauklis A E, Karl C W, Gagani A I, et al. Composite material recycling technology—state-of-the-art and sustainable development for the 2020s[J]. Journal of Composites Science, 2021, 5(1): 28. |
16 | Utekar S, V K S, More N, et al. Comprehensive study of recycling of thermosetting polymer composites—driving force, challenges and methods[J]. Composites Part B: Engineering, 2021, 207: 108596. |
17 | Hamada H, Fujihara K, Harada A. The influence of sizing conditions on bending properties of continuous glass fiber reinforced polypropylene composites[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(9): 979-990. |
18 | Aguado R, Olazar M, San José M J, et al. Wax formation in the pyrolysis of polyolefins in a conical spouted bed reactor[J]. Energy & Fuels, 2002, 16(6): 1429-1437. |
19 | 孙艺蕾, 马跃, 李术元, 等. 聚烯烃塑料的热解和催化热解研究进展[J]. 化工进展, 2021, 40(5): 2784-2801. |
Sun Y L, Ma Y, Li S Y, et al. Research progress in the pyrolysis and catalytic pyrolysis of waste polyolefin plastics[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2784-2801. | |
20 | 刘涛. 酚醛玻璃纤维成型工艺研究[D]. 北京: 北京理工大学, 2015. |
Liu T. Moulding process of phenlic glassfiber reinforceplastic[D]. Beijing: Beijing Institute of Technology, 2015. | |
21 | 黄珍霞, 梁峰, 王军凯, 等. 钴纳米颗粒催化酚醛树脂制备碳纳米管[J]. 硅酸盐学报, 2016, 44(9): 1380-1386. |
Huang Z X, Liang F, Wang J K, et al. Catalytic preparation of carbon nanotubes from phenolic resin using cobalt nanoparticle[J]. Journal of the Chinese Ceramic Society, 2016, 44(9): 1380-1386. | |
22 | Yan H, Lu C X, Jing D Q, et al. Recycling of carbon fibers in epoxy resin composites using supercritical 1-propanol[J]. New Carbon Materials, 2016, 31(1): 46-54. |
23 | 熊永健. 芳纶纤维/环氧树脂复合材料及与EPDM共固化特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
Xiong Y J. Study on the Co curing properties of aramid fiber/epoxy composites and EPDM[D]. Harbin: Harbin Institute of Technology, 2020. | |
24 | 王子健, 周晓东. 连续纤维增强热塑性复合材料成型工艺研究进展[J]. 复合材料科学与工程, 2021(10): 120-128. |
Wang Z J, Zhou X D. Research progress on forming process of continuous fiber reinforced thermoplastic composites[J]. Composites Science and Engineering, 2021(10): 120-128. | |
25 | Wurster S. Creating a circular economy in the automotive industry: the contribution of combining crowdsourcing and Delphi research[J]. Sustainability, 2021, 13(12): 6762. |
26 | Colucci G, Ostrovskaya O, Frache A, et al. The effect of mechanical recycling on the microstructure and properties of PA66 composites reinforced with carbon fibers[J]. Journal of Applied Polymer Science, 2015, 132(29): 42275. |
27 | Pietroluongo M, Padovano E, Frache A, et al. Mechanical recycling of an end-of-life automotive composite component[J]. Sustainable Materials and Technologies, 2020, 23: e00143. |
28 | 徐平来, 李娟, 李晓倩. 热固性树脂基复合材料的回收方法研究进展[J]. 工程塑料应用, 2013, 41(1): 100-104. |
Xu P L, Li J, Li X Q. Recycling progress on thermosetting resin based composites[J]. Engineering Plastics Application, 2013, 41(1): 100-104. | |
29 | 张灵静, 陈桦, 蒋建军, 等. 碳纤维增强热固性复合材料回收再利用技术研究进展[J]. 工程塑料应用, 2019, 47(7): 134-140, 150. |
Zhang L J, Chen H, Jiang J J, et al. Research progress on recycling and reuse technology of carbon fiber reinforced thermosetting composites[J]. Engineering Plastics Application, 2019, 47(7): 134-140, 150. | |
30 | Giorgini L, Leonardi C, Mazzocchetti L, et al. Pyrolysis of fiberglass/polyester composites: recovery and characterization of obtained products[J]. FME Transactions, 2016, 44(4): 405-414. |
31 | 关国强, 周文贤, 陈烈强, 等. 碳酸钙强化酚醛型线路板热解脱溴[J]. 化工学报, 2009, 60(1): 216-222. |
Guan G Q, Zhou W X, Chen L Q, et al. Pyrolytic debromination of phenolic resin type PCB enhanced by calcium carbonate[J]. CIESC Journal, 2009, 60(1): 216-222. | |
32 | Gao R T, Xu Z M. Pyrolysis and utilization of nonmetal materials in waste printed circuit boards: debromination pyrolysis, temperature-controlled condensation, and synthesis of oil-based resin[J]. Journal of Hazardous Materials, 2019, 364: 1-10. |
33 | Pimenta S, Pinho S T. The effect of recycling on the mechanical response of carbon fibres and their composites[J]. Composite Structures, 2012, 94(12): 3669-3684. |
34 | Kim K W, Lee H M, An J H, et al. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method[J]. Journal of Environmental Management, 2017, 203: 872-879. |
35 | Pickering S J. Recycling technologies for thermoset composite materials—current status[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(8): 1206-1215. |
36 | Jiang G, Pickering S J, Walker G S, et al. Surface characterisation of carbon fibre recycled using fluidised bed[J]. Applied Surface Science, 2008, 254(9): 2588-2593. |
37 | Marsh G. Reclaiming value from post-use carbon composite[J]. Reinforced Plastics, 2008, 52(7): 36-39. |
38 | Yip H L H, Pickering S J, Rudd C D. Characterisation of carbon fibres recycled from scrap composites using fluidised bed process[J]. Plastics, Rubber and Composites, 2002, 31(6): 278-282. |
39 | 郑炯莉. 微波辅助分解废线路板非金属材料技术研究[D]. 太原: 中北大学, 2019. |
Zheng J L. Microwave assisted degradation of nonmetallic materials from waste print circuit boards[D]. Taiyuan: North University of China, 2019. | |
40 | Sun J, Wang W L, Liu Z, et al. Study of the transference rules for bromine in waste printed circuit boards during microwave-induced pyrolysis[J]. Journal of the Air & Waste Management Association, 2011, 61(5): 535-542. |
41 | Zhang T H, Mao X, Qu J S, et al. Microwave-assisted catalytic pyrolysis of waste printed circuit boards, and migration and distribution of bromine[J]. Journal of Hazardous Materials, 2021, 402: 123749. |
42 | Eckert C A, Knutson B L, Debenedetti P G. Supercritical fluids as solvents for chemical and materials processing[J]. Nature, 1996, 383(6598): 313-318. |
43 | Borjan D, Knez Ž, Knez M. Recycling of carbon fiber-reinforced composites—difficulties and future perspectives[J]. Materials, 2021, 14(15): 4191. |
44 | Okajima I, Sako T. Recycling of carbon fiber-reinforced plastic using supercritical and subcritical fluids[J]. Journal of Material Cycles and Waste Management, 2017, 19(1): 15-20. |
45 | Li K, Zhang L G, Xu Z M. Decomposition behavior and mechanism of epoxy resin from waste integrated circuits under supercritical water condition[J]. Journal of Hazardous Materials, 2019, 374: 356-364. |
46 | Liu Y Y, Shan G H, Meng L H. Recycling of carbon fibre reinforced composites using water in subcritical conditions[J]. Materials Science and Engineering: A, 2009, 520(1/2): 179-183. |
47 | 潘君齐, 刘光复, 刘志峰, 等. 废弃印刷线路板超临界CO2回收实验研究[J]. 西安交通大学学报, 2007, 41(5): 625-627. |
Pan J Q, Liu G F, Liu Z F, et al. Recycling experiments of discarded printed circuit boards based on supercritical carbon dioxide[J]. Journal of Xi'an Jiaotong University, 2007, 41(5): 625-627. | |
48 | Li J, Xu P L, Zhu Y K, et al. A promising strategy for chemical recycling of carbon fiber/thermoset composites: self-accelerating decomposition in a mild oxidative system[J]. Green Chemistry, 2012, 14(12): 3260-3263. |
49 | 久保内昌敏, 党伟荣, 仙北谷英贵. 胺类固化剂固化的双酚环氧树脂回收再利用的研究[J]. 纤维复合材料, 2002, 19 (1): 58-60, 50. |
Kubouchi M, Dang W R, Sembokuya H. Studies on recycling of bisphenol epoxy resin cured with amine[J]. Fiber Composites, 2002, 19 (1): 58-60, 50. | |
50 | Shi J, Bao L M, Kobayashi R, et al. Reusing recycled fibers in high-value fiber-reinforced polymer composites: improving bending strength by surface cleaning[J]. Composites Science and Technology, 2012, 72(11): 1298-1303. |
51 | Jiang J J, Deng G L, Chen X, et al. On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition[J]. Composites Science and Technology, 2017, 151: 243-251. |
52 | Das M, Chacko R, Varughese S. An efficient method of recycling of CFRP waste using peracetic acid[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1564-1571. |
53 | Sun H F, Guo G P, Ali Memon S, et al. Recycling of carbon fibers from carbon fiber reinforced polymer using electrochemical method[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 10-17. |
54 | Zhu J H, Chen P Y, Su M N, et al. Recycling of carbon fibre reinforced plastics by electrically driven heterogeneous catalytic degradation of epoxy resin[J]. Green Chemistry, 2019, 21(7): 1635-1647. |
55 | Nahil M A, Williams P T. Recycling of carbon fibre reinforced polymeric waste for the production of activated carbon fibres[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 67-75. |
56 | Lester E, Kingman S, Wong K H, et al. Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study[J]. Materials Research Bulletin, 2004, 39(10): 1549-1556. |
57 | Jiang G, Pickering S J, Lester E H, et al. Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol[J]. Composites Science and Technology, 2009, 69(2): 192-198. |
58 | Kratish Y, Marks T J. Efficient polyester hydrogenolytic deconstruction via tandem catalysis[J]. Angewandte Chemie International Edition, 2022, 61(9): e202112576. |
59 | Li Y W, Wang M, Liu X W, et al. Catalytic transformation of PET and CO2 into high-value chemicals[J]. Angewandte Chemie International Edition, 2022, 61(10): e202117205. |
60 | Oh S, Stache E E. Chemical upcycling of commercial polystyrene via catalyst-controlled photooxidation[J]. Journal of the American Chemical Society, 2022, 144(13): 5745-5749. |
61 | 邵健, 冯军宗, 柳凤琦, 等. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
Shao J, Feng J Z, Liu F Q, et al. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres[J]. CIESC Journal, 2022, 73(9): 3787-3801. | |
62 | Wang X L, An W L, Tian F, et al. High-efficiency hydrolysis of thermosetting polyester resins into porous functional materials using low-boiling aqueous solvents[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(42): 16010-16019. |
63 | Kumar A, von Wolff N, Rauch M, et al. Hydrogenative depolymerization of nylons[J]. Journal of the American Chemical Society, 2020, 142(33): 14267-14275. |
64 | Jensen J P, Skelton K. Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 165-176. |
65 | Gopalraj S K, Kärki T. A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis[J]. SN Applied Sciences, 2020, 2(3): 433. |
66 | 张建川, 张前峰, 蔡红军. 风力发电复合材料叶片废弃物的几种处理方法分析[J]. 材料科学与工程学报, 2012, 30(3): 473-482. |
Zhang J C, Zhang Q F, Cai H J. Analysis on treatment methods of composite blade wastes of wind turbines[J]. Journal of Materials Science and Engineering, 2012, 30(3): 473-482. | |
67 | Paulsen E B, Enevoldsen P. A multidisciplinary review of recycling methods for end-of-life wind turbine blades[J]. Energies, 2021, 14(14): 4247. |
68 | Beauson J, Madsen B, Toncelli C, et al. Recycling of shredded composites from wind turbine blades in new thermoset polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 390-399. |
69 | Åkesson D, Foltynowicz Z, Christéen J, et al. Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines[J]. Journal of Reinforced Plastics and Composites, 2012, 31(17): 1136-1142. |
70 | Mishnaevsky L. Sustainable end-of-life management of wind turbine blades: overview of current and coming solutions[J]. Materials, 2021, 14(5): 1124. |
71 | Meng F R, Olivetti E, Zhao Y Y, et al. Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9854-9865. |
72 | Giorgini L, Benelli T, Brancolini G, et al. Recycling of carbon fiber reinforced composite waste to close their life cycle in a cradle-to-cradle approach[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 26: 100368. |
73 | Butenegro J A, Bahrami M, Abenojar J, et al. Recent progress in carbon fiber reinforced polymers recycling: a review of recycling methods and reuse of carbon fibers[J]. Materials, 2021, 14(21): 6401. |
74 | 杜晓渊, 程小全, 王志勇, 等. 碳纤维复合材料回收与再利用技术进展[J]. 高分子材料科学与工程, 2020, 36(8): 182-190. |
Du X Y, Cheng X Q, Wang Z Y, et al. Recycling and reusing of carbon fiber reinforced polymer: a current technical progress[J]. Polymer Materials Science & Engineering, 2020, 36(8): 182-190. | |
75 | Zhang J, Chevali V S, Wang H, et al. Current status of carbon fibre and carbon fibre composites recycling[J]. Composites Part B: Engineering, 2020, 193: 108053. |
76 | 胡炜杰, 钟明建, 杨营, 等. 碳纤维复合材料的回收与再利用技术[J]. 材料导报, 2021, 35(S2): 627-633. |
Hu W J, Zhong M J, Yang Y, et al. Recycling and reuse technology of carbon fiber composite materials[J]. Materials Reports, 2021, 35(S2): 627-633. | |
77 | Pickering S J, Kelly R M, Kennerley J R, et al. A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites[J]. Composites Science and Technology, 2000, 60(4): 509-523. |
78 | Song Y S, Youn J R, Gutowski T G. Life cycle energy analysis of fiber-reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1257-1265. |
79 | Pimenta S, Pinho S T. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook[J]. Waste Management, 2011, 31(2): 378-392. |
80 | Witik R A, Teuscher R, Michaud V, et al. Carbon fibre reinforced composite waste: an environmental assessment of recycling, energy recovery and landfilling[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49: 89-99. |
81 | Hedlund-Astrom A. Model for end of life treatment of polymer composite materials[D].Stockholm: Kungliga Tekniska Hogskolan, 2005. |
82 | Oliveux G, Dandy L O, Leeke G A. Current status of recycling of fibre reinforced polymers: review of technologies, reuse and resulting properties[J]. Progress in Materials Science, 2015, 72: 61-99. |
83 | Yuan Y C, Sun Y X, Yan S J, et al. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites[J]. Nature Communications, 2017, 8: 14657. |
84 | Wang S, Ma S Q, Li Q, et al. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite[J]. Green Chemistry, 2019, 21(6): 1484-1497. |
85 | Wang B B, Ma S Q, Yan S F, et al. Readily recyclable carbon fiber reinforced composites based on degradable thermosets: a review[J]. Green Chemistry, 2019, 21(21): 5781-5796. |
86 | Montarnal D, Capelot M, Tournilhac F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968. |
87 | Ma S Q, Webster D C. Degradable thermosets based on labile bonds or linkages: a review[J]. Progress in Polymer Science, 2018, 76: 65-110. |
88 | Yamaguchi A, Hashimoto T, Kakichi Y, et al. Recyclable carbon fiber-reinforced plastics (CFRP) containing degradable acetal linkages: synthesis, properties, and chemical recycling[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(8): 1052-1059. |
89 | Johnson L M, Ledet E, Huffman N D, et al. Controlled degradation of disulfide-based epoxy thermosets for extreme environments[J]. Polymer, 2015, 64: 84-92. |
90 | Ruiz de Luzuriaga A, Martin R, Markaide N, et al. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites[J]. Materials Horizons, 2016, 3(3): 241-247. |
91 | La Rosa A D, Banatao D R, Pastine S J, et al. Recycling treatment of carbon fibre/epoxy composites: materials recovery and characterization and environmental impacts through life cycle assessment[J]. Composites Part B: Engineering, 2016, 104: 17-25. |
92 | La Rosa A D, Blanco I, Banatao D R, et al. Innovative chemical process for recycling thermosets cured with Recyclamines® by converting bio-epoxy composites in reusable thermoplastic—an LCA study[J]. Materials, 2018, 11(3): 353. |
93 | Job S. Recycling composites commercially[J]. Reinforced Plastics, 2014, 58(5): 32-38. |
94 | 胡侨乐, 端玉芳, 刘志, 等. 碳纤维增强聚合物基复合材料回收再利用现状[J]. 复合材料学报, 2022, 39(1): 64-76. |
Hu Q L, Duan Y F, Liu Z, et al. Current status of carbon fiber reinforced polymer composites recycling and re-manufacturing[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 64-76. |
[1] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[4] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[5] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[6] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[7] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[8] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[9] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[10] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[11] | Kaihong TANG, Xiaofeng HE, Guiqiu XU, Yang YU, Xiaofeng LIU, Tiejun GE, Ailing ZHANG. Review on combustion behavior and flame retardant research of phenolic foams [J]. CIESC Journal, 2022, 73(8): 3483-3500. |
[12] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[13] | Yong’an CHEN, Anning ZHOU, Yunlong LI, Zhiwei SHI, Xinfu HE, Weihong JIAO. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts [J]. CIESC Journal, 2022, 73(7): 3026-3037. |
[14] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
[15] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 446
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 825
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||