[1] 马立玲, 徐发富, 王军政. 一种基于改进核Fisher的故障诊断方法[J]. 化工学报, 2017, 68(3):1041-1048. MA L L, XU F F, WANG J Z. A fault diagnosis method based on improved kernel Fisher[J]. CIESC Journal, 2017,68(3):1041-1048.
[2] 江伟, 王振雷, 王昕. 基于混合分块DMICA-PCA的全流程过程监控方法[J]. 化工学报, 2017, 68(2):759-766. JIANG W, WANG Z L, WANG X. Plant-wide process monitoring based on mixed multiblock DMICA-PCA[J]. CIESC Journal, 2017, 68(2):759-766.
[3] 王坤, 杜文莉, 钱锋. 基于小波核聚类的非高斯过程故障检测方法[J]. 化工学报, 2011, 62(2):427-432. WANG K, DU W L, QIAN F. Non-Gaussian process fault detection based on wavelet kernel clustering[J]. CIESC Journal, 2011, 62(2):427-432.
[4] 齐咏生, 王普, 高学金, 等. 一种基于改进MPCA的间歇过程监控与故障诊断方法[J]. 化工学报, 2009, 60(11):2838-2846. QI Y S, WANG P, GAO X J, et al. Batch process monitoring and fault diagnosis based on improved multi-way principal component analysis[J]. CIESC Journal, 2009, 60(11):2838-2846.
[5] BALDI P, HORNIK K. Neural networks and principal component analysis:learning from examples without local minima[J]. Neural Networks, 1989, 2(1):53-58.
[6] ROWEIS S. EM algorithms for PCA and SPCA[J]. Advances in Neural Information Processing Systems, 1998, 10:626-632.
[7] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323:533-536.
[8] CHANDAR A P S, LAULY S, LAROCHELLE H, et al. An autoencoder approach to learning bilingual word representations[J]. Advances in Neural Information Processing Systems, 2014, 3:1853-1861.
[9] LORE K G, AKINTAYO A, SARKAR S. LLNet:a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61:650-662.
[10] MEHTA J, MAJUMDAR A. RODEO:robust DE-aliasing autoencoder for real-time medical image reconstruction[J]. Pattern Recognition, 2017, 63:499-510.
[11] DENG J, ZHANG Z, EYBEN F, et al. Autoencoder-based unsupervised domain adaptation for speech emotion recognition[J]. IEEE Signal Processing Letters, 2014, 21(9):1068-1072.
[12] DENG J, ZHANG Z, MARCHI E, et al. Sparse autoencoder-based feature transfer learning for speech emotion recognition[C]//Affective Computing and Intelligent Interaction. IEEE, 2013:511-516.
[13] BETECHUOH B L, MARWALA T, TETTEY T. Autoencoder networks for HIV classification[J]. Current Science, 2006, 91(11):1467-1473.
[14] LI J, STRUZIK Z, ZHANG L, et al. Feature learning from incomplete EEG with denoising autoencoder[J]. Neurocomputing, 2015, 165:23-31.
[15] XIA R, DENG J, SCHULLER B, et al. Modeling gender information for emotion recognition using denoising autoencoder[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2014:990-994.
[16] MARCHI E, VESPERINI F, EYBEN F, et al. A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2015:1996-2000.
[17] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//International Conference on Machine Learning. ACM, 2008:1096-1103.
[18] PRINCIPE J C, WANG L. Non-linear time series modeling with self-organization feature maps[C]//Neural Networks for Signal Processing. IEEE, 1995:11-20.
[19] FORNELLS A, GOLOBARDES E, MARTORELL J M, et al. Measuring the applicability of self-organization maps in a case-based reasoning system[C]//Iberian Conference on Pattern Recognition and Image Analysis. Springer-Verlag, 2007:532-539.
[20] KOHONEN T. The self-organizing map[J]. Neurocomputing, 1990, 21(1/2/3):1-6.
[21] DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
[22] GAO X, HOU J. An Improved SVM Integrated GS-PCA Fault Diagnosis Approach of Tennessee Eastman Process[M]. Amsterdam:Elsevier Science Publishers B. V., 2016.
[23] CHEN H, TI?O P, YAO X. Cognitive fault diagnosis in Tennessee Eastman process using learning in the model space[J]. Computers & Chemical Engineering, 2014, 67(3):33-42.
[24] WANG A, SHA M, LIU L, et al. Fault diagnosis of TE process based on ensemble improved binary-tree SVM[C]//IEEE Fifth International Conference on Bio-Inspired Computing:Theories and Applications. IEEE, 2010:908-912.
[25] GOLSHAN M, PISHVAIE M R, BOOZARJOMEHRY R B. Stochastic and global real time optimization of Tennessee Eastman challenge problem[J]. Engineering Applications of Artificial Intelligence, 2008, 21(2):215-228.
[26] GOLSHAN M, BOOZARJOMEHRY R B, PISHVAIE M R. A new approach to real time optimization of the Tennessee Eastman challenge problem[J]. Chemical Engineering Journal, 2005, 112(1):33-44.
[27] RICKER N L. Optimal steady-state operation of the Tennessee Eastman challenge process[J]. Computers & Chemical Engineering, 1995, 19(9):949-959.
[28] RICKER N L. Decentralized control of the Tennessee Eastman challenge process[J]. Journal of Process Control, 1996, 6(4):205-221.
[29] TIAN Y, DU W L, QIAN F. High dimension feature extraction based visualized SOM fault diagnosis method and its application in p-xylene oxidation process[J]. Chinese Journal of Chemical Engineering, 2015, 23(9):1509-1517.
[30] CHEN X Y, YAN X F. Using improved self-organizing map for fault diagnosis in chemical industry process[J]. Chemical Engineering Research & Design, 2012, 90(12):2262-2277. |