CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5438-5448.DOI: 10.11949/0438-1157.20221303
• Separation engineering • Previous Articles Next Articles
Qingling QIAN(), Qing ZHU, Zhengjin YANG(), Tongwen XU()
Received:
2022-09-27
Revised:
2022-11-24
Online:
2023-01-17
Published:
2022-12-05
Contact:
Zhengjin YANG, Tongwen XU
通讯作者:
杨正金,徐铜文
作者简介:
钱庆玲(1999—),女,硕士研究生,qianql@mail.ustc.edu.cn
基金资助:
CLC Number:
Qingling QIAN, Qing ZHU, Zhengjin YANG, Tongwen XU. Microporous Noria polymer for selective adsorption and separation of xylene isomers[J]. CIESC Journal, 2022, 73(12): 5438-5448.
钱庆玲, 朱晴, 杨正金, 徐铜文. 微孔Noria聚合物用于二甲苯异构体吸附分离研究[J]. 化工学报, 2022, 73(12): 5438-5448.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 (a) FT-IR spectra of TFTPN, Noria and MNP; (b) 13C NMR spectra of TFTPN and Noria, and 13C CP/MAS solid-state NMR spectra of MNP; (c) Powder X-ray diffraction patterns of Noria and MNP; (d) SEM image of MNP
Fig.3 (a) N2 adsorption/desorption isotherms of Noria and MNP at 77 K; (b) The pore size distributions of Noria and MNP using the nonlocal density functional theory method
Fig.5 (a) Time-dependent adsorption of single-xylene isomer on MNP; (b) Fitting the adsorption of xylene isomers on MNP to pseudo second-order kinetic model
二甲苯 | C0/ (mol·L-1) | 准一级动力学模型 | 准二级动力学模型 | 颗粒内扩散模型 | |||||
---|---|---|---|---|---|---|---|---|---|
k1 / (g·mg-1·h-1) | Qe/ (mg·g-1) | R2 | k2 / (g·mg-1·h-1) | Qe / (mg·g-1) | R2 | k3 / (g·mg-1·h-1) | R2 | ||
OX | 0.1 | 0.96 | 54.1 | 0.6020 | 1.31 | 53.9 | 0.9999 | 2.50 | 0.7511 |
PX | 0.1 | 0.68 | 31.0 | 0.5597 | 0.90 | 30.8 | 0.9989 | 3.61 | 0.9004 |
MX | 0.1 | 0.67 | 24.8 | 0.6382 | 0.56 | 24.5 | 0.9980 | 2.41 | 0.8033 |
Table 1 Kinetic fitting results of xylene isomers adsorption on MNP
二甲苯 | C0/ (mol·L-1) | 准一级动力学模型 | 准二级动力学模型 | 颗粒内扩散模型 | |||||
---|---|---|---|---|---|---|---|---|---|
k1 / (g·mg-1·h-1) | Qe/ (mg·g-1) | R2 | k2 / (g·mg-1·h-1) | Qe / (mg·g-1) | R2 | k3 / (g·mg-1·h-1) | R2 | ||
OX | 0.1 | 0.96 | 54.1 | 0.6020 | 1.31 | 53.9 | 0.9999 | 2.50 | 0.7511 |
PX | 0.1 | 0.68 | 31.0 | 0.5597 | 0.90 | 30.8 | 0.9989 | 3.61 | 0.9004 |
MX | 0.1 | 0.67 | 24.8 | 0.6382 | 0.56 | 24.5 | 0.9980 | 2.41 | 0.8033 |
Fig.6 (a) Single-xylene isomer adsorption isotherms on MNP at 25℃; (b) Langmuir isotherms of single-xylene isomer adsorption on MNP at 25℃; (c) The effect of temperature on single-xylene isomer adsorption on MNP
二甲苯 | 温度/℃ | Langmuir 吸附等温线 | Freundlich 吸附等温线 | ||||
---|---|---|---|---|---|---|---|
Qm/ (mg·g-1) | KL/ (L·mg-1) | R2 | KF / (mg·g-1·(L·mol-1)1/n ) | 1/n | R2 | ||
OX | 25 | 344 | 2.60 | 0.9925 | 279.8 | 0.57 | 0.9799 |
PX | 25 | 131 | 7.93 | 0.9951 | 131.4 | 0.36 | 0.8851 |
MX | 25 | 118 | 18.00 | 0.9956 | 116.0 | 0.13 | 0.6579 |
Table 2 Parameters from fitting the adsorption isotherms of single-xylene isomer on MNP to Langmuir adsorption model and Freundlich adsorption model
二甲苯 | 温度/℃ | Langmuir 吸附等温线 | Freundlich 吸附等温线 | ||||
---|---|---|---|---|---|---|---|
Qm/ (mg·g-1) | KL/ (L·mg-1) | R2 | KF / (mg·g-1·(L·mol-1)1/n ) | 1/n | R2 | ||
OX | 25 | 344 | 2.60 | 0.9925 | 279.8 | 0.57 | 0.9799 |
PX | 25 | 131 | 7.93 | 0.9951 | 131.4 | 0.36 | 0.8851 |
MX | 25 | 118 | 18.00 | 0.9956 | 116.0 | 0.13 | 0.6579 |
Fig.7 (a) Competitive batch adsorption experiments on MNP conducted with a binary mixture of OX and PX at 25℃; (b) Competitive batch adsorption experiments on MNP conducted with a binary mixture of OX and MX at 25℃; (c) The adsorption capacity of each isomer on MNP in the competitive batch adsorption experiments conducted with a ternary mixture of PX, OX and MX at 25℃; (d) OX/PX and OX/MX selectivity in the ternary competitive batch adsorption experiments
Fig.8 (a) Schematic representation of a homemade column separation device; (b) Breakthrough curves on MNP in the column adsorption experiment conducted with a ternary mixture of PX, OX and MX at 25℃
二甲苯 | 动力学尺寸/Å | 分子尺寸/Å | z/x | ||
---|---|---|---|---|---|
x | y | z | |||
PX | 6.7 | 6.62 | 3.81 | 9.15 | 1.38 |
OX | 7.4 | 7.27 | 3.83 | 7.83 | 1.08 |
MX | 7.1 | 7.32 | 3.95 | 8.99 | 1.23 |
Table 3 Properties of xylene isomers
二甲苯 | 动力学尺寸/Å | 分子尺寸/Å | z/x | ||
---|---|---|---|---|---|
x | y | z | |||
PX | 6.7 | 6.62 | 3.81 | 9.15 | 1.38 |
OX | 7.4 | 7.27 | 3.83 | 7.83 | 1.08 |
MX | 7.1 | 7.32 | 3.95 | 8.99 | 1.23 |
22 | Zhang G W, Emwas A H, Shahul Hameed U F, et al. Shape-induced selective separation of ortho-substituted benzene isomers enabled by cucurbit[7]uril host macrocycles[J]. Chem, 2020, 6(5): 1082-1096. |
23 | Sun N, Wang S Q, Zou R Q, et al. Benchmark selectivity p-xylene separation by a non-porous molecular solid through liquid or vapor extraction[J]. Chemical Science, 2019, 10(38): 8850-8854. |
24 | Moosa B, Alimi L O, Shkurenko A, et al. A polymorphic azobenzene cage for energy-efficient and highly selective p-xylene separation[J]. Angewandte Chemie International Edition, 2020, 59(48): 21367-21371. |
25 | Du Plessis M, Nikolayenko V I, Barbour L J. Record-setting selectivity for p-xylene by an intrinsically porous zero-dimensional metallocycle[J]. Journal of the American Chemical Society, 2020, 142(10): 4529-4533. |
26 | Lee J S M, Briggs M E, Hasell T, et al. Hyperporous carbons from hypercrosslinked polymers[J]. Advanced Materials, 2016, 28(44): 9804-9810. |
27 | Alsbaiee A, Smith B J, Xiao L L, et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer[J]. Nature, 2016, 529(7585): 190-194. |
28 | He Y, Zhu X, Li Y K, et al. Efficient CO2 capture by triptycene-based microporous organic polymer with functionalized modification[J]. Microporous and Mesoporous Materials, 2015, 214: 181-187. |
29 | Wang H, Liu C Z, Ma X F, et al. Porous multifunctional phenylcarbamoylated-β-cyclodextrin polymers for rapid removal of aromatic organic pollutants[J]. Environmental Science and Pollution Research, 2022, 29(10): 13893-13904. |
30 | Tan H L, Chen Q B, Chen T T, et al. Selective adsorption and separation of xylene isomers and benzene/cyclohexane with microporous organic polymers POP-1[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32717-32725. |
31 | Li L Y, Guo L D, Olson D H, et al. Discrimination of xylene isomers in a stacked coordination polymer[J]. Science, 2022, 377(6603): 335-339. |
32 | Kudo H, Hayashi R, Mitani K, et al. Molecular waterwheel (Noria) from a simple condensation of resorcinol and an alkanedial[J]. Angewandte Chemie International Edition, 2006, 45(47): 7948-7952. |
33 | Giri A, Patil N N, Patra A. Porous noria polymer: a cage-to-network approach toward a robust catalyst for CO2 fixation and nitroarene reduction[J]. Chemical Communications, 2021, 57(36): 4404-4407. |
1 | Yang Y X, Bai P, Guo X H. Separation of xylene isomers: a review of recent advances in materials[J]. Industrial & Engineering Chemistry Research, 2017, 56(50): 14725-14753. |
2 | 殷梦凡, 唐政, 张睿, 等. 离子液体液液萃取分离正辛烷/邻二甲苯[J]. 化工学报, 2021, 72(12): 6282-6290. |
Yin M F, Tang Z, Zhang R, et al. Separation of n-octane and o-xylene by liquid-liquid extraction with ionic liquids[J]. CIESC Journal, 2021, 72(12): 6282-6290. | |
3 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
4 | Lusi M, Barbour L J. Solid-vapor sorption of xylenes: prioritized selectivity as a means of separating all three isomers using a single substrate[J]. Angewandte Chemie International Edition, 2012, 51(16): 3928-3931. |
5 | Torres-Knoop A, Krishna R, Dubbeldam D. Separating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8[J]. Angewandte Chemie International Edition, 2014, 53(30): 7774-7778. |
6 | 陈亮, 肖剑, 谢在库, 等. 对二甲苯悬浮熔融结晶动力学[J]. 化工学报, 2009, 60(11): 2787-2791. |
Chen L, Xiao J, Xie Z K, et al. Suspension melt crystallization kinetics of p-xylene[J]. CIESC Journal, 2009, 60(11): 2787-2791. | |
7 | 杨明磊, 魏民, 胡蓉, 等. 二甲苯模拟移动床分离过程建模与仿真[J]. 化工学报, 2013, 64(12): 4335-4341. |
Yang M L, Wei M, Hu R, et al. Modeling of simulated moving bed for xylene separation[J]. CIESC Journal, 2013, 64(12): 4335-4341. | |
8 | Zhang G W, Hua B, Dey A, et al. Intrinsically porous molecular materials (IPMs) for natural gas and benzene derivatives separations[J]. Accounts of Chemical Research, 2021, 54(1): 155-168. |
9 | Santacesaria E, Morbidelli M, Danise P, et al. Separation of xylenes on Y zeolites(1): Delermination of the adsorption equilibrium parameters, selectivities, and mass-transfer coefficients through finite bath experiments[J]. Industrial & Engineering Chemistry Process Design and Development, 1982, 21(3): 440-445. |
34 | Rasouli M, Yaghobi N, Chitsazan S, et al. Influence of monovalent cations ion-exchange on zeolite ZSM-5 in separation of para-xylene from xylene mixture[J]. Microporous and Mesoporous Materials, 2012, 150: 47-54. |
35 | Jiang J W, Sandler S I. Shape versus inverse-shape selective adsorption of alkane isomers in carbon nanotubes[J]. The Journal of Chemical Physics, 2006, 124(2): 024717. |
10 | Minceva M, Rodrigues A E. Understanding and revamping of industrial scale SMB units for p-xylene separation[J]. AIChE Journal, 2007, 53(1): 138-149. |
11 | Rasouli M, Yaghobi N, Chitsazan S, et al. Effect of nanocrystalline zeolite NaY on meta-xylene separation[J]. Microporous and Mesoporous Materials, 2012, 152: 141-147. |
12 | Zhao Y J, Zhao H F, Liu D H. Selective adsorption and separation of o-xylene using an aluminum-based metal-organic framework[J]. Industrial & Engineering Chemistry Research, 2021, 60(47): 17143-17149. |
13 | Yang L P, Liu H B, Xing J C, et al. Separation of xylene isomers in the anion-pillared square grid material SIFSIX-1-Cu[J]. Chemistry—a European Journal, 2021, 27(20): 6187-6190. |
14 | Li X L, Wang J H, Bai N N, et al. Refinement of pore size at sub-angstrom precision in robust metal-organic frameworks for separation of xylenes[J]. Nature Communications, 2020, 11: 4280. |
15 | He Z J, Yang Y X, Bai P, et al. Metal-organic framework MIL-53(Cr) as a superior adsorbent: highly efficient separation of xylene isomers in liquid phase[J]. Journal of Industrial and Engineering Chemistry, 2019, 77: 262-272. |
16 | Mukherjee S, Joarder B, Manna B, et al. Framework-flexibility driven selective sorption of p-xylene over other isomers by a dynamic metal-organic framework[J]. Scientific Reports, 2014, 4: 5761. |
17 | Huang W, Jiang J, Wu D Y, et al. A highly stable nanotubular MOF rotator for selective adsorption of benzene and separation of xylene isomers[J]. Inorganic Chemistry, 2015, 54(22): 10524-10526. |
18 | Duan L H, Dong X Y, Wu Y Y, et al. Adsorption and diffusion properties of xylene isomers and ethylbenzene in metal-organic framework MIL-53(Al)[J]. Journal of Porous Materials, 2013, 20(2): 431-440. |
19 | Vermoortele F, Maes M, Moghadam P Z, et al. p-Xylene-selective metal-organic frameworks: a case of topology-directed selectivity[J]. Journal of the American Chemical Society, 2011, 133(46): 18526-18529. |
20 | Lennox M J, Düren T. Understanding the kinetic and thermodynamic origins of xylene separation in UiO-66(Zr) via molecular simulation[J]. The Journal of Physical Chemistry C, 2016, 120(33): 18651-18658. |
21 | Jie K C, Liu M, Zhou Y J, et al. Near-ideal xylene selectivity in adaptive molecular pillar[n]arene crystals[J]. Journal of the American Chemical Society, 2018, 140(22): 6921-6930. |
[1] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[2] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[3] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[4] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[5] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[6] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[7] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[8] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[9] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[10] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[11] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[12] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[13] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[14] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[15] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||