CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5138-5149.DOI: 10.11949/0438-1157.20220988
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Shiyang YE1(), Min CHENG1, Xu JI1, Yiyang DAI1, Yagu DANG1, Kexin BI1, Zhiwei ZHAO2, Li ZHOU1()
Received:
2022-06-17
Revised:
2022-09-10
Online:
2022-12-06
Published:
2022-11-05
Contact:
Li ZHOU
叶诗洋1(), 程敏1, 吉旭1, 戴一阳1, 党亚固1, 毕可鑫1, 赵志伟2, 周利1()
通讯作者:
周利
作者简介:
叶诗洋(1997—),男,硕士研究生,ysyyes@163.com
基金资助:
CLC Number:
Shiyang YE, Min CHENG, Xu JI, Yiyang DAI, Yagu DANG, Kexin BI, Zhiwei ZHAO, Li ZHOU. High-throughput computational screening strategy for high-performance COF materials: separation of hexane isomers[J]. CIESC Journal, 2022, 73(11): 5138-5149.
叶诗洋, 程敏, 吉旭, 戴一阳, 党亚固, 毕可鑫, 赵志伟, 周利. 高性能COF材料的高通量筛选策略:己烷异构体分离[J]. 化工学报, 2022, 73(11): 5138-5149.
Add to citation manager EndNote|Ris|BibTeX
COF ID | PLD/Å | LCD/Å | VF | ρ/(g/cm3) | SA/(m2/cm3) | PV/(cm3/g) | Sads | Cw/(mol/kg) | APS/(mol/kg) | R/% |
---|---|---|---|---|---|---|---|---|---|---|
条件(a)吸附压力1 bar和解吸压力0.1 bar | ||||||||||
3D-Py-COF-2P | 13.47 | 12.29 | 0.90 | 0.28 | 2030.21 | 3.06 | 1.38 | 9.67 | 13.31 | 94.58 |
JUC-550 3-fold | 10.44 | 9.58 | 0.87 | 0.33 | 2660.17 | 2.55 | 1.52 | 8.40 | 12.78 | 91.80 |
FLT-COF-1 AB | 11.36 | 10.72 | 0.84 | 0.48 | 1965.35 | 1.58 | 2.57 | 4.95 | 12.71 | 94.30 |
JUC-551 3-fold | 10.66 | 9.75 | 0.86 | 0.34 | 2769.82 | 2.45 | 1.51 | 7.90 | 11.95 | 88.68 |
3D-HNU5 | 14.32 | 12.10 | 0.97 | 0.32 | 1643.40 | 2.75 | 1.26 | 8.93 | 11.29 | 86.89 |
条件(b)吸附压力10 bar和解吸压力1 bar | ||||||||||
COF-DL229 2-fold | 17.57 | 14.36 | 0.93 | 0.16 | 1303.54 | 5.88 | 1.10 | 19.75 | 21.82 | 92.83 |
DL-COF-1-ctn | 16.21 | 14.26 | 0.93 | 0.19 | 1363.41 | 4.79 | 1.18 | 16.00 | 18.83 | 87.51 |
DL-COF-2-ctn | 16.19 | 14.24 | 0.92 | 0.21 | 1380.14 | 4.29 | 1.17 | 14.23 | 16.72 | 87.47 |
JUC-550 2-fold | 12.49 | 10.59 | 0.91 | 0.22 | 1813.73 | 4.00 | 1.16 | 11.90 | 13.83 | 77.54 |
JUC-551 2-fold | 12.06 | 10.08 | 0.91 | 0.23 | 1883.71 | 3.79 | 1.19 | 9.25 | 10.99 | 62.95 |
条件(c)吸附压力10 bar和解吸压力0.1 bar | ||||||||||
COF-DL229 2-fold | 17.57 | 14.36 | 0.93 | 0.16 | 1303.54 | 5.88 | 1.10 | 21.15 | 23.36 | 99.38 |
DL-COF-1-ctn | 16.21 | 14.26 | 0.93 | 0.19 | 1363.41 | 4.79 | 1.18 | 18.12 | 21.32 | 99.08 |
DL-COF-2-ctn | 16.19 | 14.24 | 0.92 | 0.21 | 1380.14 | 4.29 | 1.17 | 16.12 | 18.93 | 99.07 |
FLT-COF-1 AB | 11.36 | 10.72 | 0.84 | 0.48 | 1965.35 | 1.58 | 2.54 | 7.07 | 17.94 | 95.95 |
JUC-550 2-fold | 12.49 | 10.59 | 0.91 | 0.22 | 1813.73 | 4.00 | 1.16 | 15.15 | 17.61 | 98.73 |
Table 1 Top 5 ranked COFs with best APS for the three sets of adsorption and desorption pressures
COF ID | PLD/Å | LCD/Å | VF | ρ/(g/cm3) | SA/(m2/cm3) | PV/(cm3/g) | Sads | Cw/(mol/kg) | APS/(mol/kg) | R/% |
---|---|---|---|---|---|---|---|---|---|---|
条件(a)吸附压力1 bar和解吸压力0.1 bar | ||||||||||
3D-Py-COF-2P | 13.47 | 12.29 | 0.90 | 0.28 | 2030.21 | 3.06 | 1.38 | 9.67 | 13.31 | 94.58 |
JUC-550 3-fold | 10.44 | 9.58 | 0.87 | 0.33 | 2660.17 | 2.55 | 1.52 | 8.40 | 12.78 | 91.80 |
FLT-COF-1 AB | 11.36 | 10.72 | 0.84 | 0.48 | 1965.35 | 1.58 | 2.57 | 4.95 | 12.71 | 94.30 |
JUC-551 3-fold | 10.66 | 9.75 | 0.86 | 0.34 | 2769.82 | 2.45 | 1.51 | 7.90 | 11.95 | 88.68 |
3D-HNU5 | 14.32 | 12.10 | 0.97 | 0.32 | 1643.40 | 2.75 | 1.26 | 8.93 | 11.29 | 86.89 |
条件(b)吸附压力10 bar和解吸压力1 bar | ||||||||||
COF-DL229 2-fold | 17.57 | 14.36 | 0.93 | 0.16 | 1303.54 | 5.88 | 1.10 | 19.75 | 21.82 | 92.83 |
DL-COF-1-ctn | 16.21 | 14.26 | 0.93 | 0.19 | 1363.41 | 4.79 | 1.18 | 16.00 | 18.83 | 87.51 |
DL-COF-2-ctn | 16.19 | 14.24 | 0.92 | 0.21 | 1380.14 | 4.29 | 1.17 | 14.23 | 16.72 | 87.47 |
JUC-550 2-fold | 12.49 | 10.59 | 0.91 | 0.22 | 1813.73 | 4.00 | 1.16 | 11.90 | 13.83 | 77.54 |
JUC-551 2-fold | 12.06 | 10.08 | 0.91 | 0.23 | 1883.71 | 3.79 | 1.19 | 9.25 | 10.99 | 62.95 |
条件(c)吸附压力10 bar和解吸压力0.1 bar | ||||||||||
COF-DL229 2-fold | 17.57 | 14.36 | 0.93 | 0.16 | 1303.54 | 5.88 | 1.10 | 21.15 | 23.36 | 99.38 |
DL-COF-1-ctn | 16.21 | 14.26 | 0.93 | 0.19 | 1363.41 | 4.79 | 1.18 | 18.12 | 21.32 | 99.08 |
DL-COF-2-ctn | 16.19 | 14.24 | 0.92 | 0.21 | 1380.14 | 4.29 | 1.17 | 16.12 | 18.93 | 99.07 |
FLT-COF-1 AB | 11.36 | 10.72 | 0.84 | 0.48 | 1965.35 | 1.58 | 2.54 | 7.07 | 17.94 | 95.95 |
JUC-550 2-fold | 12.49 | 10.59 | 0.91 | 0.22 | 1813.73 | 4.00 | 1.16 | 15.15 | 17.61 | 98.73 |
Fig.6 Radial distribution functions of interaction atom pairs between various framework atoms of COF-DL229 2-fold and hexane isomers at 433 K and 0.1 bar
Fig.7 Radial distribution functions of interaction atom pairs between various framework atoms of COF-DL229 2-fold and hexane isomers at 433 K and 10 bar
Fig.9 Relationship between adsorption selectivity Sads and working capacity Cw (the points are color coded with respect to the APS value, each point represents one COF structure)
1 | 周晶晶. 中国能源依赖度指数构建及评价研究[D]. 徐州: 中国矿业大学, 2019. |
Zhou J J. Research on the construction and evaluation for China’s energy dependence index[D]. Xuzhou: China University of Mining and Technology, 2019. | |
2 | 尧命发, 郑尊清, 沈捷, 等. 辛烷值对均质压燃发动机燃烧特性和性能的影响[J]. 燃烧科学与技术, 2004, 10(3): 244-249. |
Yao M F, Zheng Z Q, Shen J, et al. Experimental study on the influence of fuel octane number on combustion characteristics and performance of HCCI engine[J]. Journal of Combustion Science and Technology, 2004, 10(3): 244-249. | |
3 | Peralta D, Chaplais G, Simon-Masseron A, et al. Separation of C6 paraffins using zeolitic imidazolate frameworks: comparison with zeolite 5A[J]. Industrial & Engineering Chemistry Research, 2012, 51(12): 4692-4702. |
4 | 郭辉, 王菊香, 景晓锋. UOP C5/C6低温异构化技术及工业应用[J]. 炼油技术与工程, 2018, 48(10): 9-13. |
Guo H, Wang J X, Jing X F. UOP C5/C6 low-temperature isomerization process(Penex-DIH) and its commercial application[J]. Petroleum Refinery Engineering, 2018, 48(10): 9-13. | |
5 | 韩笑, 陈雨亭, 苏宝根, 等. 己烷异构体吸附分离材料研究进展[J]. 化工学报, 2021, 72(7): 3445-3465. |
Han X, Chen Y T, Su B G, et al. Advances in adsorbents for hexane isomers separation[J]. CIESC Journal, 2021, 72(7): 3445-3465. | |
6 | Silva J A C, Rodrigues A E. Equilibrium and kinetics of n-hexane sorption in pellets of 5A zeolite[J]. AIChE Journal, 1997, 43(10): 2524-2534. |
7 | Arruebo M, Falconer J L, Noble R D. Separation of binary C5 and C6 hydrocarbon mixtures through MFI zeolite membranes[J]. Journal of Membrane Science, 2006, 269(1/2): 171-176. |
8 | Olson D H, Camblor M A, Villaescusa L A, et al. Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58[J]. Microporous and Mesoporous Materials, 2004, 67(1): 27-33. |
9 | Krishna R, Calero S, Smit B. Investigation of entropy effects during sorption of mixtures of alkanes in MFI zeolite[J]. Chemical Engineering Journal, 2002, 88(1/2/3): 81-94. |
10 | Bárcia P S, Silva J A C, Rodrigues A E. Multicomponent sorption of hexane isomers in zeolite BETA[J]. AIChE Journal, 2007, 53(8): 1970-1981. |
11 | Bárcia P S, Silva J A C, Rodrigues A E. Separation by fixed-bed adsorption of hexane isomers in zeolite BETA pellets[J]. Industrial & Engineering Chemistry Research, 2006, 45(12): 4316-4328. |
12 | Bárcia P S, Silva J A C, Rodrigues A E. Adsorption equilibrium and kinetics of branched hexane isomers in pellets of BETA zeolite[J]. Microporous and Mesoporous Materials, 2005, 79(1/2/3): 145-163. |
13 | Krishna R. Separating mixtures by exploiting molecular packing effects in microporous materials[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(1): 39-59. |
14 | Chen B L, Liang C D, Yang J, et al. A microporous metal-organic framework for gas-chromatographic separation of alkanes[J]. Angewandte Chemie, 2006, 118(9): 1418-1421. |
15 | Chung Y G, Bai P, Haranczyk M, et al. Computational screening of nanoporous materials for hexane and heptane isomer separation[J]. Chemistry of Materials, 2017, 29(15): 6315-6328. |
16 | Dong X Q, Fan Q, Hao W Z, et al. Adsorption and separation of hexane isomers in metal-organic frameworks (MOFs): a computational study[J]. Computational and Theoretical Chemistry, 2021, 1197: 113164. |
17 | Herm Z R, Wiers B M, Mason J A, et al. Separation of hexane isomers in a metal-organic framework with triangular channels[J]. Science, 2013, 340(6135): 960-964. |
18 | Peng L, Zhu Q, Wu P L, et al. High-throughput computational screening of metal-organic frameworks with topological diversity for hexane isomer separations[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(16): 8508-8516. |
19 | Solanki V A, Borah B. Ranking of metal-organic frameworks (MOFs) for separation of hexane isomers by selective adsorption[J]. Industrial & Engineering Chemistry Research, 2019, 58(43): 20047-20065. |
20 | Solanki V A, Borah B. Exploring the potentials of metal-organic frameworks as adsorbents and membranes for separation of hexane isomers[J]. The Journal of Physical Chemistry C, 2019, 123(29): 17808-17822. |
21 | Solanki V A, Borah B. Adsorption and diffusion of hexane isomers in a series of microporous metal-organic frameworks (MOF): a molecular simulation study[J]. AIP Conference Proceedings, 2020, 2220(1): 130014. |
22 | Solanki V A, Borah B. High-throughput computational screening of 12, 351 real metal-organic framework structures for separation of hexane isomers: a quest for a yet better adsorbent[J]. Journal of Physical Chemistry C, 2020, 124: 4582-4594. |
23 | Bury W, Walczak A M, Leszczyński M K, et al. Rational design of noncovalent diamondoid microporous materials for low-energy separation of C6-hydrocarbons[J]. Journal of the American Chemical Society, 2018, 140(44): 15031-15037.[ |
24 | Castro-Gutiérrez J, de Oliveira Jardim E, Canevesi R L S, et al. Molecular sieving of linear and branched C6 alkanes by tannin-derived carbons[J]. Carbon, 2021, 174: 413-422. |
25 | Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
26 | Li H L, Eddaoudi M, O’Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
27 | Li H L, Eddaoudi M, Groy T, et al. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC=1, 4-benzenedicarboxylate)[J]. Journal of the American Chemical Society, 1998, 120(33): 8571-8572. |
28 | Burtch N C, Jasuja H, Walton K S. Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20): 10575-10612. |
29 | Jasuja H, Burtch N C, Huang Y G, et al. Kinetic water stability of an isostructural family of zinc-based pillared metal-organic frameworks[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2013, 29(2): 633-642. |
30 | Aksu G O, Daglar H, Altintas C, et al. Computational selection of high-performing covalent organic frameworks for adsorption and membrane-based CO2/H2 separation[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2020, 124(41): 22577-22590. |
31 | Altundal O F, Altintas C, Keskin S. Can COFs replace MOFs in flue gas separation? High-throughput computational screening of COFs for CO2/N2 separation[J]. Journal of Materials Chemistry A, 2020, 8(29): 14609-14623. |
32 | Zeng Y F, Zou R Q, Zhao Y L. Covalent organic frameworks for CO2 capture[J]. Advanced Materials (Deerfield Beach, Fla.), 2016, 28(15): 2855-2873. |
33 | Tong M, Yang Q, Xiao Y, et al. Revealing the structure-property relationship of covalent organic frameworks for CO₂ capture from postcombustion gas: a multi-scale computational study[J]. Physical Chemistry Chemical Physics, 2014, 16(29): 15189-15198. |
34 | Tong M M, Yang Q Y, Zhong C L. Computational screening of covalent organic frameworks for CH4/H2, CO2/H2 and CO2/CH4 separations[J]. Microporous and Mesoporous Materials, 2015, 210: 142-148. |
35 | Adsorption Keskin S., diffusion, and separation of CH 4 /H2 mixtures in covalent organic frameworks: molecular simulations and theoretical predictions[J]. Journal of Physical Chemistry C, 2012, 116: 1772-1779. |
36 | Yan T, Lan Y, Tong M, et al. Screening and design of covalent organic framework membranes for CO2/CH4 separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1220-1227. |
37 | Tong M, Zhang Y, Yan T, et al. Computational insights on the role of nanochannel environment in the CO2/CH4 and H2/CH4 separation using restacked covalent organic framework membranes[J]. The Journal of Physical Chemistry C, 2019, 123(37): 22949-22958. |
38 | Zeng H W, Liu Y, Liu H L. Adsorption and diffusion of CO2 and CH4 in covalent organic frameworks: an MC/MD simulation study[J]. Molecular Simulation, 2018, 44(15): 1244-1251. |
39 | Wang Y, Wang G, Liu Y, et al. Identifying promising covalent-organic frameworks for decarburization and desulfurization from biogas via computational screening[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(26): 8858-8867. |
40 | Tong M M, Lan Y S, Yang Q Y, et al. Exploring the structure-property relationships of covalent organic frameworks for noble gas separations[J]. Chemical Engineering Science, 2017, 168: 456-464. |
41 | Huang J J, Han X, Yang S, et al. Microporous 3D covalent organic frameworks for liquid chromatographic separation of xylene isomers and ethylbenzene[J]. Journal of the American Chemical Society, 2019, 141(22): 8996-9003. |
42 | Ma H, Ren H, Meng S, et al. A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity[J]. Chemical Communications, 2013, 49(84): 9773-9775. |
43 | Huang N, Chen X, Krishna R, et al. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization[J]. Angewandte Chemie (International Ed. in English), 2015, 54(10): 2986-2990. |
44 | Liu J, Wei Y, Li P, et al. Selective H2S/CO2 separation by metal-organic frameworks based on chemical-physical adsorption[J]. The Journal of Physical Chemistry C, 2017, 121(24): 13249-13255. |
45 | Vaesen S, Guillerm V, Yang Q Y, et al. A robust amino-functionalized titanium(Ⅳ) based MOF for improved separation of acid gases[J]. Chemical Communications (Cambridge, England), 2013, 49(86): 10082-10084. |
46 | Ongari D, Yakutovich A V, Talirz L, et al. Building a consistent and reproducible database for adsorption evaluation in covalent-organic frameworks[J]. ACS Central Science, 2019, 5(10): 1663-1675. |
47 | Willems T F, Rycroft C H, Kazi M, et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Microporous and Mesoporous Materials, 2012, 149(1): 134-141. |
48 | Dubbeldam D, Calero S, Ellis D E, et al. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials[J]. Molecular Simulation, 2016, 42(2): 81-101. |
49 | Anderson R, Rodgers J, Argueta E, et al. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning[J]. Chemistry of Materials, 2018, 30(18): 6325-6337. |
50 | Dubbeldam D, Krishna R, Calero S, et al. Computer-assisted screening of ordered crystalline nanoporous adsorbents for separation of alkane isomers[J]. Angewandte Chemie International Edition, 2012, 51(47): 11867-11871. |
51 | Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992, 114(25): 10024-10035. |
52 | Martin M G, Siepmann J I. Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes[J]. Journal of Physical Chemistry B, 1999, 103: 4508-4517. |
53 | Martin M G, Siepmann J I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes[J]. The Journal of Physical Chemistry B, 1998, 102(14): 2569-2577. |
54 | Henrique A, Rodrigues A E, Silva J A C. Separation of hexane isomers in ZIF-8 by fixed bed adsorption[J]. Industrial & Engineering Chemistry Research, 2019, 58(1): 378-394. |
55 | 杨磊, 吴宇静, 吴选军, 等. 面向C4烯烃混合物吸附分离的真实金属-有机骨架材料高通量筛选[J]. 化学学报, 2021, 79(4): 520-529. |
Yang L, Wu Y J, Wu X J, et al. High-throughput screening of real metal-organic frameworks for adsorption separation of C4 olefins[J]. Acta Chimica Sinica, 2021, 79(4): 520-529. | |
56 | 王之婧, 王俊超, 赵行乐, 等. CO2在氨基改性MIL-101(Cr)中吸附的分子模拟[J]. 无机化学学报, 2018, 34(11): 1966-1974. |
Wang Z J, Wang J C, Zhao X L, et al. Molecular simulation for CO2 adsorption in amine-functionalized MIL-101(Cr)[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(11): 1966-1974. | |
57 | Wang C, Wang Y, Ge R L, et al. A 3D covalent organic framework with exceptionally high iodine capture capability[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2018, 24(3): 585-589. |
58 | Thompson C M, Occhialini G, McCandless G T, et al. Computational and experimental studies on the effects of monomer planarity on covalent organic framework formation[J]. Journal of the American Chemical Society, 2017, 139(30): 10506-10513. |
59 | Rodgers J L, Nicewander W A. Thirteen ways to look at the correlation coefficient[J]. The American Statistician, 1988, 42(1): 59-66. |
60 | Ozturk T N, Keskin S, et al. Computational screening of porous coordination networks for adsorption and membrane-based gas separations[J]. Journal of Physical Chemistry C, 2014, 118(25):13988-13997. |
61 | Guan P, Qiu J, Zhao Y, et al. A novel crystalline azine-linked three-dimensional covalent organic framework for CO2 capture and conversion[J]. Chemical Communications, 2019, 55(83):12459-12462. |
62 | Breiman L, Friedman J, Olshen R, et al. Classification and regression trees[J]. Biometrics, 1984, 40(3): 358. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[5] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[9] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[10] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[11] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[12] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[13] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[14] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[15] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||