CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 128-140.DOI: 10.11949/j.issn.0438-1157.20171179
Previous Articles Next Articles
KANG Yao, WANG Suzhen, FAN Jiangli, PENG Xiaojun
Received:
2017-08-28
Revised:
2017-11-21
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171179
Supported by:
supported by the National Natural Science Foundation of China (21576037, 21422601, 21421005) and the NSFC-Liaoning United Fund (U1608222).
康垚, 王素真, 樊江莉, 彭孝军
通讯作者:
樊江莉
基金资助:
国家自然科学基金项目(21576037,21422601,21421005);NSFC-辽宁联合基金项目(U1608222)。
CLC Number:
KANG Yao, WANG Suzhen, FAN Jiangli, PENG Xiaojun. Progress in inorganic nanomedicine carriers for tumor diagnosis and treatments[J]. CIESC Journal, 2018, 69(1): 128-140.
康垚, 王素真, 樊江莉, 彭孝军. 无机纳米药物载体在肿瘤诊疗中的研究进展[J]. 化工学报, 2018, 69(1): 128-140.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171179
[1] | EVENS A M, JOVANOVIC B D, SU Y C, et al. Rituximab-associated hepatitis B virus (HBV) reactivation in lymphoproliferative diseases:meta-analysis and examination of FDA safety reports[J]. Annals of Oncology, 2010, 22(5):1170-1180. |
[2] | YEO W, LAM K C, ZEE B, et al. Hepatitis B reactivation in patients with hepatocellular carcinoma undergoing systemic chemotherapy[J]. Annals of Oncology, 2004, 15(11):1661-1666. |
[3] | CHABNER B A, ROBERTS T G. Chemotherapy and the war on cancer[J]. Nature Reviews Cancer, 2005, 5(1):65-72. |
[4] | WIRADHARMA N, ZHANG Y, VENKATARAMAN S, et al. Self-assembled polymer nanostructures for delivery of anticancer therapeutics[J]. Nano Today, 2009, 4(4):302-317. |
[5] | FAROKHZAD O C, LANGER R. Impact of nanotechnology on drug delivery[J]. ACS Nano, 2009, 3(1):16-20. |
[6] | WICKI A, WITZIGMANN D, BALASUBRAMANIAN V, et al. Nanomedicine in cancer therapy:challenges, opportunities, and clinical applications[J]. Journal of Controlled Release, 2015, 200:138-157. |
[7] | PEER D, KARP J M, HONG S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nature Nanotechnology, 2007, 2(12):751-760. |
[8] | HO Y P, LEONG K W. Quantum dot-based theranostics[J]. Nanoscale, 2010, 2(1):60-68. |
[9] | SANTRA S, KAITTANIS C, SANTIESTEBAN O J, et al. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy[J]. Journal of the American Chemical Society, 2011, 133(41):16680-16688. |
[10] | ZHANG H, FAN J L, WANG J Y, et al. An off-on COX-2 specific fluorescent probe:targeting the golgi apparatus of cancer cells[J]. Journal of the American Chemical Society, 2013, 135(31):11663-11669. |
[11] | ZHANG H, FAN J L, WANG J Y, et al. Fluorescence discrimination of cancer from inflammation by molecular response to COX-2 enzymes[J]. Journal of the American Chemical Society, 2013, 135(46):17469-17475. |
[12] | WANG B H, FAN J L, WANG X, et al. A nile blue based infrared fluorescent probe:imaging tumors that over-express cyclooxygenase-2[J]. Chemical Communications, 2015, 51(4):792-795. |
[13] | FAN J L, GUO S G, WANG S, et al. Lighting-up breast cancer cells by a near-infrared fluorescent probe based on KIAA1363 enzyme-targeting[J]. Chemical Communications, 2017, 53(35):4857-4860. |
[14] | ZHOU J, YANG Y, ZHANG C. Toward biocompatible semiconductor quantum dots:from biosynthesis and bioconjugation to biomedical application[J]. Chemical Reviews, 2015, 115(21):11669-11717. |
[15] | VAN VEGGEL F C J M. Near-infrared quantum dots and their delicate synthesis, challenging characterization, and exciting potential applications[J]. Chemistry of Materials, 2013, 26(1):111-122. |
[16] | GUO W. Synthesis of Zn-Cu-In-S/ZnS coreshell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging[J]. Theranostics, 2013, 3(2):99-108. |
[17] | SASAKI A, TSUKASAKI Y, KOMATSUZAKI A, et al. Recombinant protein (EGFP-Protein G)-coated PbS quantum dots for in vitro and in vivo dual fluorescence (visible and second-NIR) imaging of breast tumors[J]. Nanoscale, 2015, 7(12):5115-5119. |
[18] | WANG S, RIEDINGER A, LI H, et al. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects[J]. ACS Nano, 2015, 9(2):1788-1800. |
[19] | FENG S, CHEN J, WO Y, et al. Real-time and long-time in vivo imaging in the shortwave infrared window of perforator vessels for more precise evaluation of flap perfusion[J]. Biomaterials, 2016, 103:256-264. |
[20] | DEL ROSAL B, CARRASCO E, REN F, et al. Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback[J]. Advanced Functional Materials, 2016, 26(33):6060-6068. |
[21] | SANTOS H D A, RUIZ D, LIFANTE G, et al. Time resolved spectroscopy of infrared emitting Ag2S nanocrystals for subcutaneous thermometry[J]. Nanoscale, 2017, 9(7):2505-2513. |
[22] | RUIZ D, DEL ROSAL B, ACEBRON M, et al. Ag/Ag2S nanocrystals for high sensitivity near-infrared luminescence nanothermometry[J]. Advanced Functional Materials, 2017, 27(6):12-15. |
[23] | MELAMED J R, RILEY R S, VALCOURT D M, et al. Using gold nanoparticles to disrupt the tumor microenvironment:an emerging therapeutic strategy[J]. ACS Nano, 2016, 10(12):10631-10635. |
[24] | LI J Y, LIU J, CHEN C Y. Remote control and modulation of cellular events by plasmonic gold nanoparticles:implications and opportunities for biomedical applications[J]. ACS Nano, 2017, 11(3):2403-2409. |
[25] | ZHOU W, GAO X, LIU D, et al. Gold nanoparticles for in vitro diagnostics[J]. Chemical Reviews, 2015, 115(19):10575-10636. |
[26] | LI N, ZHAO P, ASTRUC D. Anisotropic gold nanoparticles:synthesis, properties, applications, and toxicity[J]. Angewandte Chemie International Edition, 2014, 53(7):1756-1789. |
[27] | SUN X, HUANG X, YAN X, et al. Chelator-free 64Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy[J]. ACS Nano, 2014, 8(8):8438-8446. |
[28] | SONG J, YANG X, JACOBSON O, et al. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy[J]. ACS Nano, 2015, 9(9):9199-9209. |
[29] | CHEHELTANI R, EZZIBDEH R M, CHHOUR P, et al. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging[J]. Biomaterials, 2016, 102:87-97. |
[30] | GE X, SONG Z M, SUN L, et al. Lanthanide (Gd3+ and 3+) functionalized gold nanoparticles for in vivo imaging and therapy[J]. Biomaterials, 2016, 108:35-43. |
[31] | FU J, LIANG L, QIU L. In situ generated gold nanoparticle hybrid polymersomes for water-soluble chemotherapeutics:inhibited leakage and pH-responsive intracellular release[J]. Advanced Functional Materials, 2017, 27(18):1604981(12). |
[32] | GAO F, SUN M, XU L, et al. Biocompatible cup-shaped nanocrystal with ultrahigh photothermal efficiency as tumor therapeutic agent[J]. Advanced Functional Materials, 2017, 27(24):1700605(6). |
[33] | CHANG Y, HE L, LI Z, et al. Designing core-shell gold and selenium nanocomposites for cancer radiochemotherapy[J]. ACS Nano, 2017, 11(5):4848-4858. |
[34] | 屈健, 田敏, 王谦, 等. 碳纳米管-水纳米流体的光热转化特性[J]. 化工学报, 2016, 67(S2):113-119. QU J, TIAN M, WANG Q, et al. Photo-thermal properties of MWCNT-H2O nanofluid[J]. CIESC Journal, 2016, 67(S2):113-119. |
[35] | YIN P T, SHAH S, CHHOWALLA M, et al. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications[J]. Chemical Reviews, 2015, 115(7):2483-2531. |
[36] | GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9):5464-5519. |
[37] | LIANG C, DIAO S, WANG C, et al. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes[J]. Advanced Materials, 2014, 26(32):5646-5652. |
[38] | LIU J, WANG C, WANG X, et al. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy[J]. Advanced Functional Materials, 2015, 25(3):384-392. |
[39] | XIE L S, WANG G H, ZHOU H, et al. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy[J]. Biomaterials, 2016, 103:219-228. |
[40] | KALLURU P, VANKAYALA R, CHIANG C S, et al. Nano-graphene oxide-mediated in vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors[J]. Biomaterials, 2016, 95:1-10. |
[41] | KANG S, LEE J, RYU S, et al. Gold nanoparticle graphene oxide hybrid sheets attached on mesenchymal stem cells for effective photothermal cancer therapy[J]. Chemistry of Materials, 2017, 29(8):3461-3476. |
[42] | WANG S, LIN Q J, CHEN J T, et al. Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis[J]. Carbon, 2017, 112:53-62. |
[43] | 罗运晖, 乐恺, 赵凌云, 等. 交变磁场中Fe3O4磁流体对肿瘤组织加热作用的理论研究[J]. 化工学报, 2009, 60(4):833-839. LUO Y H, YUE K, ZHAO L Y, et al. Theoretical study on heating effect of Fe3O4 magnetic fluid on tumor tissues in alternating magnetic field[J]. CIESC Journal, 2009, 60(4):833-839. |
[44] | 胡平, 常恬, 陈震宇, 等. 纳米Fe3O4磁性颗粒表面改性及其在医学和环保领域的应用[J]. 化工学报, 2017, 68(7):2641-2652. HU P, CHANG T, CHEN Z Y, et al. Surface modification and application in biomedicine and environmental protection of magnetic Fe3O4 nanoparticles[J]. CIESC Journal, 2017, 68(7):2641-2652. |
[45] | LAURENT S, FORGE D, PORT M, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications[J]. Chemical Reviews, 2008, 108(6):2064-2110. |
[46] | LEE N, YOO D, LING D, et al. Iron oxide based nanoparticles for multimodal imaging and magneto responsive therapy[J]. Chemical Reviews, 2015, 115(19):10637-10689. |
[47] | LI J C, ZHENG L F, CAI H D, et al. Polyethylene imine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging[J]. Biomaterials, 2013, 34(33):8382-8392. |
[48] | ZHANG Y, SHEN T T, DENG X, et al. Design of a versatile nanocomposite for ‘seeing’ drug release and action behavior[J]. Journal of Materials Chemistry B, 2015, 3(43):8449-8458. |
[49] | TSENG S J, HUANG K Y, KEMPSON I M, et al. Remote control of light-triggered virotherapy[J]. ACS Nano, 2016, 10(11):10339-10346. |
[50] | YUAN Y, DING Z L, QIAN J C, et al. Casp3/7-instructed intracellular aggregation of Fe3O4 nanoparticles enhances T2 MR imaging of tumor apoptosis[J]. Nano Letters, 2016, 16(4):2686-2691. |
[51] | GUO R R, TIAN Y, WANG Y J, et al. Near-infrared laser-triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer[J]. Advanced Functional Materials, 2017, 27(13):1606398(8). |
[52] | YANG C L, CHEN J P, WEI K, et al. Release of doxorubicin by a folate-grafted, chitosan-coated magnetic nanoparticle[J]. Nanomaterials, 2017, 7(4):85-91. |
[53] | ZHANG K, XU H X, JIA X Q, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J]. ACS Nano, 2016, 10(12):10816-10828. |
[54] | LUO G F, CHEN W H, LEI Q, et al. A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods[J]. Advanced Functional Materials, 2016, 26(24):4339-4350. |
[55] | LIM E K, KIM T, PAIK S, et al. Nanomaterials for theranostics:recent advances and future challenges[J]. Chemical Reviews, 2014, 115(1):327-394. |
[56] | WANG X, FENG J I, BAI Y, et al. Synthesis, properties, and applications of hollow micro-/nanostructures[J]. Chemical Reviews, 2016, 116(18):10983-11060. |
[57] | CHEN X, CHENG X Y, SOERIYADI A H, et al. Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli[J]. Biomaterials Science, 2014, 2(1):121-130. |
[58] | GIMENEZ C, DE LA TORRE C, GORBE M, et al. Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells[J]. Langmuir, 2015, 31(12):3753-3762. |
[59] | HWANG A A, LU J, TAMANOI F, et al. Functional nanovalves on protein-coated nanoparticles for in vitro and in vivo controlled drug delivery[J]. Small, 2015, 11(3):319-328. |
[60] | WANG Y H, SONG S Y, LIU J J, et al. ZnO-functionalized upconverting nanotheranostic agent:multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH[J]. Angewandte Chemie International Edition, 2015, 54(2):536-540. |
[61] | ZHANG K, XU H X, JIA X Q, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J]. ACS Nano, 2016, 10(12):10816-10828. |
[62] | CHEN W H, LUO G F, QIU W X, et al. Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemotherapy[J]. Biomaterials, 2017, 117:54-65. |
[63] | CHEN F, HUANG P, ZHU Y J, et al. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods[J]. Biomaterials, 2011, 32(34):9031-9039. |
[64] | LIU M, LIU H, SUN S F, et al. Multifunctional hydroxyapatite/Na (Y/Gd) F4:3+, Er3+ composite fibers for drug delivery and dual modal imaging[J]. Langmuir, 2014, 30(4):1176-1182. |
[65] | SYAMCHAND S S, PRIYA S, SONY G. Hydroxyapatite nanocrystals dually doped with fluorescent and paramagnetic labels for bimodal (luminomagnetic) cell imaging[J]. Microchimica Acta, 2015, 182(5):1213-1221. |
[66] | LI D L, HE J M, HUANG X, et al. Intracellular pH-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug[J]. RSC Advances, 2015, 5(39):30920-30928. |
[67] | HAO X H, HU XX, ZHANG C M, et al. Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite[J]. ACS Nano, 2015, 9(10):9614-9625. |
[68] | WANG Y F, WANG J L, HAO H, et al. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles[J]. ACS Nano, 2016, 10(11):9927-9937. |
[69] | LYBAERT L, RYU K A, NUHN L, et al. Cancer cell lysate entrapment in CaCO3 engineered with polymeric TLR-agonists:immune-modulating microparticles in view of personalized antitumor vaccination[J]. Chemistry of Materials, 2017, 29(10):4209-4217. W W, et al. Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging[J]. Drug Delivery, 2016, 23(5):1726-1733. |
[52] | YUAN Y, DING Z L, QIAN J C, et al. Casp3/7-instructed intracellular aggregation of Fe3O4 nanoparticles enhances T2 MR imaging of tumor apoptosis[J]. Nano Letters, 2016, 16(4):2686-2691. |
[53] | GUO RR, TIAN Y, WANG Y J, et al. Near-infrared laser-triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer[J]. Advanced Functional Materials, 27(13):1606398(8). |
[54] | YANG C L, CHEN J P, WEI K, et al. Release of doxorubicin by a folate-grafted, chitosan-coated magnetic nanoparticle[J]. Nanomaterials, 2017, 7(4):85-91. |
[55] | ZHANG K, XU H X, JIA X Q, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J]. ACS Nano, 2016, 10(12):10816-10828. |
[56] | LUO G F, CHEN W H, LEI Q, et al. A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods[J]. Advanced Functional Materials, 2016, 26(24):4339-4350. |
[57] | LIM E K, KIM T, PAIK S, et al. Nanomaterials for theranostics:recent advances and future challenges[J]. Chemical reviews, 2014, 115(1):327-394. |
[58] | WANG X, FENG J I, BAI Y, et al. Synthesis, properties, and applications of hollow micro-/nanostructures[J]. Chemical reviews, 2016, 116(18):10983-11060. |
[59] | CHEN X, CHENG X Y, SOERIYADI A H, et al. Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli[J]. Biomaterials Science, 2014, 2(1):121-130. |
[60] | GIMENEZ C, DE LA TORRE C, GORBE M, et al. Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells[J]. Langmuir, 2015, 31(12):3753-3762. |
[61] | HWANG A A, LU J, TAMANOI F, et al. Functional nanovalves on protein-coated nanoparticles for in vitro and in vivo controlled drug delivery[J]. Small, 2015, 11(3):319-328. |
[62] | WANG Y H, SONG S Y, LIU J J, et al. ZnO-functionalized upconverting nanotheranostic agent:multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH[J]. Angewandte Chemie International Edition, 2015, 54(2):536-540. |
[63] | ZHANG K, XU H X, JIA X Q, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J]. ACS Nano, 2016, 10(12):10816-10828. |
[64] | CHEN W H, LUO G F, QIU W X, et al. Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemotherapy[J]. Biomaterials, 2017, 117:54-65. |
[65] | CHEN F, HUANG P, ZHU Y J, et al. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods[J]. Biomaterials, 2011, 32(34):9031-9039. |
[66] | LIU M, LIU H, SUN S F, et al. Multifunctional hydroxyapatite/Na (Y/Gd) F4:Yb3+,Er3+ composite fibers for drug delivery and dual modal imaging[J]. Langmuir, 2014, 30(4):1176-1182. |
[67] | SYAMCHAND S S, PRIYA S, SONY G. Hydroxyapatite nanocrystals dually doped with fluorescent and paramagnetic labels for bimodal (luminomagnetic) cell imaging[J]. Microchimica Acta, 2015, 182(5):1213-1221. |
[68] | LI D L, HE J M, HUANG X, et al. Intracellular pH-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug[J]. RSC Advances, 2015, 5(39):30920-30928. |
[69] | HAO X H, HU XX, ZHANG C M, et al. Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite[J]. ACS Nano, 2015, 9(10):9614-9625. |
[70] | WANG Y F, WANG J L, HAO H, et al. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles[J]. ACS Nano, 2016, 10(11):9927-9937. |
[71] | LYBAERT L, RYU K A, NUHN L, et al. Cancer cell lysate entrapment in CaCO3 engineered with polymeric TLR-agonists:immune-modulating microparticles in view of personalized antitumor vaccination[J]. Chemistry of Materials, 2017, 29(10):4209-4217. |
[1] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[4] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[5] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[6] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[7] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[8] | Xiaobing JU, Xuechun LI, Fang SUN. Effect on dithiosalicylic acid derivative on properties of photocuring materials [J]. CIESC Journal, 2022, 73(9): 4187-4193. |
[9] | Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827. |
[10] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[11] | Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646. |
[12] | Hongrui ZHANG, Tian ZHANG, Xizi LONG, Xianning LI. Degradation characteristics of Cu-EDTA by coupling of photocatalysis and microbial fuel cell [J]. CIESC Journal, 2022, 73(5): 2149-2157. |
[13] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
[14] | Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146. |
[15] | Wenli GAO, Zhong XIN. Research on promotion of Fe in Ni/SBA-16 catalyzing CO methanation at low temperature [J]. CIESC Journal, 2022, 73(1): 241-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||