CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1417-1435.DOI: 10.11949/0438-1157.20211412
• Reviews and monographs • Previous Articles Next Articles
Haihang TONG(),Dezhi SHI(),Jiayu LIU,Huayi CAI,Dan LUO,Fei CHEN
Received:
2021-10-08
Revised:
2022-01-08
Online:
2022-04-25
Published:
2022-04-05
Contact:
Dezhi SHI
通讯作者:
石德智
作者简介:
童海航(1998—),男,硕士研究生,基金资助:
CLC Number:
Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles[J]. CIESC Journal, 2022, 73(4): 1417-1435.
童海航, 石德智, 刘嘉宇, 蔡桦伊, 罗丹, 陈飞. 金属纳米颗粒辅助木质纤维素暗发酵生物制氢的研究进展[J]. 化工学报, 2022, 73(4): 1417-1435.
1 | Ladole M R, Mevada J S, Pandit A B. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles[J]. Bioresource Technology, 2017, 239: 117-126. |
2 | Taherdanak M, Zilouei H, Karimi K. The effects of Fe0 and Ni0 nanoparticles versus Fe2+ and Ni2+ ions on dark hydrogen fermentation[J]. International Journal of Hydrogen Energy, 2016, 41(1): 167-173. |
3 | Lang Y Z, Arnepalli R R, Tiwari A. A review on hydrogen production: methods, materials and nanotechnology[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(5): 3719-3739. |
4 | Engliman N S, Abdul P M, Wu S Y, et al. Influence of iron (Ⅱ) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation[J]. International Journal of Hydrogen Energy, 2017, 42(45): 27482-27493. |
5 | Srivastava N, Srivastava M, Gupta V K, et al. A novel strategy to enhance biohydrogen production using graphene oxide treated thermostable crude cellulase and sugarcane bagasse hydrolyzate under co-culture system[J]. Bioresource Technology, 2018, 270: 337-345. |
6 | Patel S K S, Lee J K, Kalia V C. Beyond the theoretical yields of dark-fermentative biohydrogen[J]. Indian Journal of Microbiology, 2018, 58(4): 529-530. |
7 | Sekoai P T, Ouma C N M, du Preez S P, et al. Application of nanoparticles in biofuels: an overview[J]. Fuel, 2019, 237: 380-397. |
8 | Srivastava N, Srivastava M, Malhotra B D, et al. Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach[J]. Biotechnology Advances, 2019, 37(6): 107384. |
9 | Srivastava N, Srivastava M, Mishra P K, et al. Advances in nanomaterials induced biohydrogen production using waste biomass[J]. Bioresource Technology, 2020, 307: 123094. |
10 | Manish S, Banerjee R. Comparison of biohydrogen production processes[J]. International Journal of Hydrogen Energy, 2008, 33(1): 279-286. |
11 | Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 597-611. |
12 | Azman N F, Abdeshahian P, Kadier A, et al. Biohydrogen production from de-oiled rice bran as sustainable feedstock in fermentative process[J]. International Journal of Hydrogen Energy, 2016, 41(1): 145-156. |
13 | Ding J, Wang X, Zhou X F, et al. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production[J]. Bioresource Technology, 2010, 101(18): 7005-7013. |
14 | Venkata Mohan S. Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization[J]. International Journal of Hydrogen Energy, 2009, 34(17): 7460-7474. |
15 | Kim M, Day D F. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(7): 803-807. |
16 | Hu F, Ragauskas A. Pretreatment and lignocellulosic chemistry[J]. Bioenergy Research, 2012, 5(4): 1043-1066. |
17 | Rocha G J M, Martín C, Da Silva V F N, et al. Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification[J]. Bioresource Technology, 2012, 111: 447-452. |
18 | Pandey A, Nigam P, Soccol C R, et al. Advances in microbial amylases[J]. Biotechnology and Applied Biochemistry, 2000, 31 (2): 135-152. |
19 | Furlan F F, Filho R T, Pinto F H, et al. Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible?[J]. Biotechnology for Biofuels, 2013, 6(1): 142. |
20 | Sharma M, Joshi M, Nigam S, et al. ZnO tetrapods and activated carbon based hybrid composite: adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution[J]. Chemical Engineering Journal, 2019, 358: 540-551. |
21 | Mishra P, Thakur S, Mahapatra D M, et al. Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent — a novel approach[J]. International Journal of Hydrogen Energy, 2018, 43(5): 2666-2676. |
22 | Grieger K D, Fjordbøge A, Hartmann N B, et al. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?[J]. Journal of Contaminant Hydrology, 2010, 118(3/4): 165-183. |
23 | Lin H N, Hu B B, Zhu M J. Enhanced hydrogen production and sugar accumulation from spent mushroom compost by Clostridium thermocellum supplemented with PEG8000 and JFC-E[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2383-2390. |
24 | Lin R C, Cheng J, Ding L K, et al. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes [J]. Bioresource Technology, 2016, 207: 213-219. |
25 | Pugazhendhi A, Shobana S, Nguyen D D, et al. Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1431-1440. |
26 | Taherdanak M, Zilouei H, Karimi K. Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12956-12963. |
27 | Hokkanen S, Bhatnagar A, Sillanpää M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity[J]. Water Research, 2016, 91: 156-173. |
28 | Srivastava N, Srivastava M, Kushwaha D, et al. Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116)[J]. Bioresource Technology, 2017, 238: 552-558. |
29 | Sewwandi K A H S, Nitisoravut R. Nano zero valent iron embedded on chitosan for enhancement of biohydrogen production in dark fermentation[J]. Energy Reports, 2020, 6: 392-396. |
30 | Zhang J S, Zhao W Q, Yang J W, et al. Comparison of mesophilic and thermophilic dark fermentation with nickel ferrite nanoparticles supplementation for biohydrogen production[J]. Bioresource Technology, 2021, 329: 124853. |
31 | Wei Z, Zeng G M, Huang F, et al. Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069[J]. Green Chemistry, 2015, 17(5): 2784-2789. |
32 | Bilal S, Ali L, Khan A L, et al. Endophytic fungus Paecilomyces formosus LHL10 produces sester-terpenoid YW3548 and cyclic peptide that inhibit urease and α-glucosidase enzyme activities[J]. Archives of Microbiology, 2018, 200(10): 1493-1502. |
33 | Srivastava N, Srivastava M, Manikanta A, et al. Nanomaterials for biofuel production using lignocellulosic waste[J]. Environmental Chemistry Letters, 2017, 15(2): 179-184. |
34 | Lynch I, Cedervall T, Lundqvist M, et al. The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century[J]. Advances in Colloid and Interface Science, 2007, 134-135: 167-174. |
35 | Gao H, Shi W, Freund L B. Mechanics of receptor-mediated endocytosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(27): 9469-9474. |
36 | Gadhe A, Sonawane S S, Varma M N. Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation[J]. International Journal of Hydrogen Energy, 2015, 40(34): 10734-10743. |
37 | Wang J L, Wan W. Influence of Ni2+ concentration on biohydrogen production[J]. Bioresource Technology, 2008, 99(18): 8864-8868. |
38 | Zhang Y F, Shen J Q. Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater[J]. International Journal of Hydrogen Energy, 2007, 32(1): 17-23. |
39 | Zheng X J, Yu H Q. Biological hydrogen production by enriched anaerobic cultures in the presence of copper and zinc[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 2004, 39(1): 89-101. |
40 | Thota S P, Badiya P K, Yerram S, et al. Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses[J]. Renewable Energy, 2017, 103: 766-773. |
41 | Lukowiak A, Kedziora A, Strek W. Antimicrobial graphene family materials: progress, advances, hopes and fears[J]. Advances in Colloid and Interface Science, 2016, 236: 101-112. |
42 | Wang D, Ikenberry M, Peña L, et al. Acid-functionalized nanoparticles for pretreatment of wheat straw[J]. Journal of Biomaterials and Nanobiotechnolog, 2012, 3(3): 342-352. |
43 | Singh R K, Tiwari M K, Singh R, et al. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes[J]. International Journal of Molecular Sciences, 2013, 14(1): 1232-1277. |
44 | Kumar A, Singh S, Nain L. Magnetic nanoparticle immobilized cellulase enzyme for saccharification of paddy straw[J]. International Journal of Current Microbiology and Applied Sciences, 2018, 7(4): 881-893. |
45 | Srivastava N, Singh J, Ramteke P W, et al. Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/alginate nanocomposite[J]. Bioresource Technology, 2015, 183: 262-266. |
46 | Cherian E, Dharmendirakumar M, Baskar G. Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste[J]. Chinese Journal of Catalysis, 2015, 36(8): 1223-1229. |
47 | Ingle A P, Chandel A K, Antunes F A F, et al. New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass[J]. Biofuels Bioproducts and Biorefining, 2019, 13(3): 776-788. |
48 | Guo F, Fang Z, Xu C C, et al. Solid acid mediated hydrolysis of biomass for producing biofuels[J]. Progress in Energy and Combustion Science, 2012, 38(5): 672-690. |
49 | Gill C S, Price B A, Jones C W. Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts[J]. Journal of Catalysis, 2007, 251(1): 145-152. |
50 | Peña L, Ikenberry M, Ware B, et al. Cellobiose hydrolysis using acid-functionalized nanoparticles[J]. Biotechnology and Bioprocess Engineering, 2011, 16(6): 1214-1222. |
51 | Su T C, Fang Z, Zhang F, et al. Hydrolysis of selected tropical plant wastes catalyzed by a magnetic carbonaceous acid with microwave[J]. Scientific Reports, 2015, 5: 17538. |
52 | Ingle A P, Philippini R R, Souza Melo Y C, et al. Acid-functionalized magnetic nanocatalysts mediated pretreatment of sugarcane straw: an eco-friendly and cost-effective approach[J]. Cellulose, 2020, 27(12): 7067-7078. |
53 | Antunes F A F, Chandel A K, Terán-Hilares R, et al. Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches[J]. 3 Biotech, 2019, 9(6): 1-17. |
54 | Amin R, Khorshidi A, Shojaei A F, et al. Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste[J]. International Journal of Biological Macromolecules, 2018, 114: 106-113. |
55 | Ibarra-Gonzalez P, Rong B G. A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1523-1535. |
56 | Riva S. Laccases: blue enzymes for green chemistry[J]. Trends in Biotechnology, 2006, 24(5): 219-226. |
57 | Sukumaran R K, Singhania R R, Mathew G M, et al. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production[J]. Renewable Energy, 2009, 34(2): 421-424. |
58 | Khoshnevisan K, Poorakbar E, Baharifar H, et al. Recent advances of cellulase immobilization onto magnetic nanoparticles: an update review[J]. Magnetochemistry, 2019, 5(2): 36. |
59 | Rajnish K N, Samuel M S, John J A, et al. Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production—a narrative review[J]. International Journal of Biological Macromolecules, 2021, 182: 1793-1802. |
60 | Han H L, Cui M J, Wei L L, et al. Enhancement effect of hematite nanoparticles on fermentative hydrogen production[J]. Bioresource Technology, 2011, 102(17): 7903-7909. |
61 | Ramírez W G. Plaza Central de Mercado de Bogotá: Las variaciones de un paradigma 1849-1953[M]. Pontificia Universidad Javeriana, 2017. |
62 | Cao X H, Tan C L, Zhang X, et al. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion[J]. Advanced Materials, 2016, 28(29): 6167-6196. |
63 | Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou M, et al. Application of magnetic nanoparticles in smart enzyme immobilization[J]. Biotechnology Letters, 2016, 38(2): 223-233. |
64 | Chen F, Fan G Q, Zhang Z P, et al. Encapsulation of omega-3 fatty acids in nanoemulsions and microgels: Impact of delivery system type and protein addition on gastrointestinal fate[J]. Food Research International, 2017, 100: 387-395. |
65 | Lynch I, Dawson K A. Protein-nanoparticle interactions[J]. Nano Today, 2008, 3(1/2): 40-47. |
66 | Brady D, Jordaan J. Advances in enzyme immobilisation[J]. Biotechnology Letters, 2009, 31(11): 1639-1650. |
67 | Poorakbar E, Saboury A A, Laame Rad B, et al. Immobilization of cellulase onto core-shell magnetic gold nanoparticles functionalized by aspartic acid and determination of its activity[J]. The Protein Journal, 2020, 39(4): 328-336. |
68 | Xu J L, Huo S H, Yuan Z H, et al. Characterization of direct cellulase immobilization with superparamagnetic nanoparticles[J]. Biocatalysis and Biotransformation, 2011, 29(2/3):71-76. |
69 | Han J, Rong J H, Wang Y, et al. Immobilization of cellulase on thermo-sensitive magnetic microspheres: improved stability and reproducibility[J]. Bioprocess and Biosystems Engineering, 2018, 41(7): 1051-1060. |
70 | Li Y, Wang X Y, Zhang R Z, et al. Molecular imprinting and immobilization of cellulase onto magnetic Fe3O4@SiO2 nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(4): 2931-2936. |
71 | Hu J P, Yuan B N, Zhang Y M, et al. Immobilization of laccase on magnetic silica nanoparticles and its application in the oxidation of guaiacol, a phenolic lignin model compound[J]. RSC Advances, 2015, 5(120): 99439-99447. |
72 | Tao Q L, Li Y, Shi Y, et al. Application of molecular imprinted magnetic Fe3O4@SiO2 nanoparticles for selective immobilization of cellulase[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(6): 6055-6060. |
73 | Sánchez-Ramírez J, Martínez-Hernández J L, Segura-Ceniceros P, et al. Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for agave atrovirens lignocellulosic biomass hydrolysis[J]. Bioprocess and Biosystems Engineering, 2017, 40(1): 9-22. |
74 | Zang L M, Qiu J H, Wu X L, et al. Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization[J]. Industrial & Engineering Chemistry Research, 2014, 53(9): 3448-3454. |
75 | Abbaszadeh M, Hejazi P. Metal affinity immobilization of cellulase on Fe3O4 nanoparticles with copper as ligand for biocatalytic applications[J]. Food Chemistry, 2019, 290: 47-55. |
76 | Gou Z C, Ma N L, Zhang W Q, et al. Innovative hydrolysis of corn stover biowaste by modified magnetite laccase immobilized nanoparticles[J]. Environmental Research, 2020, 188: 109829. |
77 | Alahakoon T, Koh J W, Chong X W C, et al. Immobilization of cellulases on amine and aldehyde functionalized Fe2O3 magnetic nanoparticles[J]. Preparative Biochemistry and Biotechnology, 2012, 42(3): 234-248. |
78 | Bohara R A, Thorat N D, Pawar S H. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles[J]. Korean Journal of Chemical Engineering, 2016, 33(1): 216-222. |
79 | Srivastava N, Rawat R, Sharma R, et al. Effect of nickel-cobaltite nanoparticles on production and thermostability of cellulases from newly isolated thermotolerant Aspergillus fumigatus NS (class: Eurotiomycetes)[J]. Applied Biochemistry and Biotechnology, 2014, 174(3): 1092-1103. |
80 | Salem A H, Mietzel T, Brunstermann R, et al. Effect of cell immobilization, hematite nanoparticles and formation of hydrogen-producing granules on biohydrogen production from sucrose wastewater[J]. International Journal of Hydrogen Energy, 2017, 42(40): 25225-25233. |
81 | Poorakbar E, Shafiee A, Saboury A A, et al. Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: improvement of enzymatic activity and thermal stability[J]. Process Biochemistry, 2018, 71: 92-100. |
82 | Manasa P, Saroj P, Korrapati N, et al. Immobilization of cellulase enzyme on zinc ferrite nanoparticles in increasing enzymatic hydrolysis on ultrasound-assisted alkaline pretreated crotalaria juncea biomass[J]. Indian Journal of Science and Technology, 2017, 10(24): 1-7. |
83 | Logan, B E. Peer reviewed: extracting hydrogen and electricity from renewable resources[J]. Environmental Science & Technology, 2004, 38(9): 160A-167A. |
84 | Kapdan I K, Kargi F. Bio-hydrogen production from waste materials[J]. Enzyme and Microbial Technology, 2006, 38(5): 569-582. |
85 | Akhtar M K, Jones P R. Construction of a synthetic YdbK-dependent pyruvate: H2 pathway in Escherichia coli BL21(DE3)[J]. Metabolic Engineering, 2009, 11(3): 139-147. |
86 | Adams M W, Stiefel E I. Organometallic iron: the key to biological hydrogen metabolism[J]. Current Opinion in Chemical Biology, 2000, 4(2): 214-220. |
87 | Latifi A, Avilan L, Brugna M. Clostridial whole cell and enzyme systems for hydrogen production: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2019, 103(2): 567-575. |
88 | Broderick J B, Byer A S, Duschene K S, et al. H-Cluster assembly during maturation of the [FeFe]-hydrogenase[J]. Journal of Biological Inorganic Chemistry, 2014, 19(6): 747-757. |
89 | Lee D Y, Li Y Y, Oh Y K, et al. Effect of iron concentration on continuous H2 production using membrane bioreactor[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1244-1252. |
90 | Van Ginkel S W, Oh S E, Logan B E. Biohydrogen gas production from food processing and domestic wastewaters[J]. International Journal of Hydrogen Energy, 2005, 30(15): 1535-1542. |
91 | Yang G, Wang J L. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles[J]. Bioresource Technology, 2018, 266: 413-420. |
92 | Chen K F, Li S L, Zhang W X. Renewable hydrogen generation by bimetallic zero valent iron nanoparticles[J]. Chemical Engineering Journal, 2011, 170(2/3): 562-567. |
93 | Reardon E J. Anaerobic corrosion of granular iron: measurement and interpretation of hydrogen evolution rates[J]. Environmental Science &Technology, 1995, 29(12): 2936-2945. |
94 | Nath D, Manhar A K, Gupta K, et al. Phytosynthesized iron nanoparticles: effects on fermentative hydrogen production by Enterobacter cloacae DH-89[J]. Bulletin of Materials Science, 2015, 38(6): 1533-1538. |
95 | Malik S N, Pugalenthi V, Vaidya A N, et al. Kinetics of nano-catalysed dark fermentative hydrogen production from distillery wastewater[J]. Energy Procedia, 2014, 54: 417-430. |
96 | Reddy K, Nasr M, Kumari S, et al. Biohydrogen production from sugarcane bagasse hydrolysate: Effects of pH, S/X, Fe2+, and magnetite nanoparticles[J]. Environmental Science and Pollution Research, 2017, 24(9): 8790-8804. |
97 | Nasr M, Tawfik A, Awad H M, et al. Dual production of hydrogen and biochar from industrial effluent containing phenolic compounds[J]. Fuel, 2021, 301: 121087. |
98 | Singhvi M, Maharjan A, Thapa A, et al. Nanoparticle-associated single step hydrogen fermentation for the conversion of starch potato waste biomass by thermophilic Parageobacillus thermoglucosidasius [J]. Bioresource Technology, 2021, 337: 125490. |
99 | Yang G, Wang J L. Synergistic enhancement of biohydrogen production from grass fermentation using biochar combined with zero-valent iron nanoparticles[J]. Fuel, 2019, 251: 420-427. |
100 | Zhang L, Zhang L X, Li D P. Enhanced dark fermentative hydrogen production by zero-valent iron activated carbon micro-electrolysis[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12201-12208. |
101 | Hsieh P H, Lai Y C, Chen K Y, et al. Explore the possible effect of TiO2 and magnetic hematite nanoparticle addition on biohydrogen production by Clostridium pasteurianum based on gene expression measurements[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21685-21691. |
102 | Zhang J S, Fan C F, Zhang H W, et al. Ferric oxide/carbon nanoparticles enhanced bio-hydrogen production from glucose[J]. International Journal of Hydrogen Energy, 2018, 43(18): 8729-8738. |
103 | Rambabu K, Bharath G, Banat F, et al. Ferric oxide/date seed activated carbon nanocomposites mediated dark fermentation of date fruit wastes for enriched biohydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(31): 16631-16643. |
104 | Mostafa A, El-Dissouky A, Fawzy A, et al. Magnetite/graphene oxide nano-composite for enhancement of hydrogen production from gelatinaceous wastewater[J]. Bioresource Technology, 2016, 216: 520-528. |
105 | Sarma S J, Brar S K, Reigner J, et al. Enriched hydrogen production by bioconversion of biodiesel waste supplemented with ferric citrate and its nano-spray dried particles[J]. RSC Advances, 2014, 4(91): 49588-49594. |
106 | Moura A G L, Rabelo C A B S, Okino C H, et al. Enhancement of Clostridium butyricum hydrogen production by iron and nickel nanoparticles: effects on hydA expression[J]. International Journal of Hydrogen Energy, 2020, 45(53): 28447-28461. |
107 | Gadhe A, Sonawane S S, Varma M N. Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater[J]. International Journal of Hydrogen Energy, 2015, 40(13): 4502-4511. |
108 | Mullai P, Yogeswari M K, Sridevi K. Optimisation and enhancement of biohydrogen production using nickel nanoparticles — a novel approach[J]. Bioresource Technology, 2013, 141: 212-219. |
109 | Rambabu K, Bharath G, Thanigaivelan A, et al. Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation[J]. Bioresource Technology, 2021, 319: 124243. |
110 | Beckers L, Hiligsmann S, Lambert S D, et al. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum [J]. Bioresource Technology, 2013, 133: 109-117. |
111 | Elreedy A, Fujii M, Koyama M, et al. Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles[J]. Water Research, 2019, 151: 349-361. |
112 | Mohanraj S, Anbalagan K, Kodhaiyolii S, et al. Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: effect of Pd (Ⅱ) ion and phytogenic palladium nanoparticles[J]. Journal of Biotechnology, 2014, 192: 87-95. |
113 | Zhao W, Zhang Y F, Du B, et al. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria[J]. Bioresource Technology, 2013, 142: 240-245. |
114 | Soni D, Bafana A, Gandhi D, et al. Stress response of pseudomonas species to silver nanoparticles at the molecular level[J]. Environmental Toxicology and Chemistry, 2014, 33(9): 2126-2132. |
115 | Li Y M, Zhang Z P, Lee D J, et al. Role of L-cysteine and iron oxide nanoparticle in affecting hydrogen yield potential and electronic distribution in biohydrogen production from dark fermentation effluents by photo-fermentation[J]. Journal of Cleaner Production, 2020, 276: 123193. |
116 | Rambabu K, Show P L, Bharath G, et al. Enhanced biohydrogen production from date seeds by Clostridium thermocellum ATCC 27405[J]. International Journal of Hydrogen Energy, 2020, 45(42): 22271-22280. |
117 | Kumar G, Mathimani T, Rene E R, et al. Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13106-13113. |
118 | Cao X Y, Zhao L, Dong W F, et al. Revealing the mechanisms of alkali-based magnetic nanosheets enhanced hydrogen production from dark fermentation: comparison between mesophilic and thermophilic conditions[J]. Bioresource Technology, 2022, 343: 126141. |
119 | Cheng J, Li H, Ding L K, et al. Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: the effect of magnetite nanoparticles on microbial electron transfer and syntrophism[J]. Chemical Engineering Journal, 2020, 397: 125394. |
120 | Elsamadony M, Elreedy A, Mostafa A, et al. Perspectives on potential applications of nanometal derivatives in gaseous bioenergy pathways: mechanisms, life cycle, and toxicity[J]. ACS Sustainable Chemistry and Engineering, 2021, 9(29): 9563-9589. |
121 | Nozhevnikova A N, Russkova Y I, Litti Y V, et al. Syntrophy and interspecies electron transfer in methanogenic microbial communities[J]. Microbiology, 2020, 89(2): 129-147. |
122 | Saha S, Basak B, Hwang J H, et al. Microbial symbiosis: a network towards biomethanation[J]. Trends in Microbiology, 2020, 28(12): 968-984. |
123 | Rotaru A E, Shrestha P M, Liu F H, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy and Environmental Science, 2014, 7(1): 408-415. |
124 | Kato S, Hashimoto K, Watanabe K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7): 1646-1654. |
125 | Liu F H, Rotaru A E, Shrestha P M, et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange[J]. Environmental Microbiology, 2015, 17(3): 648-655. |
126 | El-Naggar M Y, Wanger G, Leung K M, et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1[J]. Proceedings of the National Academy of Sciences, 2010, 107(42): 18127-18131. |
127 | Zhao J, Wang Z Y, Dai Y H, et al. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter[J]. Water Research, 2013, 47(12): 4169-4178. |
128 | Gagliano M C, Ismail S B, Stams A J M, et al. Biofilm formation and granule properties in anaerobic digestion at high salinity[J]. Water Research, 2017, 121: 61-71. |
129 | Fang H H P, Zhang T, Liu H. Microbial diversity of a mesophilic hydrogen-producing sludge[J]. Applied Microbiology and Biotechnology, 2002, 58(1): 112-118. |
130 | Castelló E, Ferraz A D N, Andreani C, et al. Stability problems in the hydrogen production by dark fermentation: possible causes and solutions[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109602. |
131 | Whiteley M, Diggle S P, Greenberg E P. Progress in and promise of bacterial quorum sensing research[J]. Nature, 2017, 551(7680): 313-320. |
132 | Kalia V C. Quorum sensing inhibitors: an overview[J]. Biotechnology Advances, 2013, 31(2): 224-245. |
133 | Kalia V C, Purohit H J. Quenching the quorum sensing system: potential antibacterial drug targets[J]. Critical Reviews in Microbiology, 2011, 37(2): 121-140. |
134 | Kumar P, Patel S K S, Lee J K, et al. Extending the limits of Bacillus for novel biotechnological applications[J]. Biotechnology Advances, 2013, 31(8): 1543-1561. |
135 | Wang L H, Weng L X, Dong Y H, et al. Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase)[J]. Journal of Biological Chemistry, 2004, 279(14): 13645-13651. |
136 | Chen R D, Zhou Z G, Cao Y N, et al. High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture[J]. Microbial Cell Factories, 2010, 9(1): 1-10. |
137 | Song J X, An D, Ren N Q, et al. Effects of pH and ORP on microbial ecology and kinetics for hydrogen production in continuously dark fermentation[J]. Bioresource Technology, 2011, 102(23): 10875-10880. |
[1] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[4] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[5] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[6] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[7] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[8] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[9] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[10] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[11] | Xinzhe ZHANG, Wentao SUN, Bo LYU, Chun LI. Oxidative modification of plant natural products and microbial manufacturing [J]. CIESC Journal, 2022, 73(7): 2790-2805. |
[12] | Yinlong XU, Wenchieh CHENG, Lin WANG, Zhongfei XUE, Yixin XIE. Implication and enhancement mechanism of chitosan-assisted enzyme- induced carbonate precipitation for copper wastewater treatment [J]. CIESC Journal, 2022, 73(5): 2222-2232. |
[13] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[14] | Haibo LIU, Nan WANG, Hongzhou LIU, Tiezhu CHEN, Jianchang LI. Effects of voltage perturbation on the activities of microorganisms and key enzymes in EAD metabolic flux [J]. CIESC Journal, 2022, 73(10): 4603-4612. |
[15] | Wei SONG, Jinhui WANG, Guipeng HU, Xiulai CHEN, Liming LIU, Jing WU. Cascade catalysis for the synthesis of (R)-β-tyrosine [J]. CIESC Journal, 2022, 73(1): 352-361. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 625
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 887
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||