[1] |
CHOI S. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME Fed., 1995, 231(1):99-105.
|
[2] |
LEE S P, CHOI S, LI S, et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. Journal of Heat Transfer, 1999, 121(2):280-289.
|
[3] |
JOW C S, TENG T P, CHANGG H. A simple model to estimate thermal conductivity of fluid with acicular nanoparticles[J]. Journal of Alloys & Compounds, 2007, 434:569-571.
|
[4] |
BARBER J, BRUTIN D, TADRIST L. A review on boiling heat transfer enhancemengt, with nanofluids[J]. Nanoscale Research Letters, 2011, 6(1):280.
|
[5] |
薛淑文, 李雨晴, 肖卓楠, 等. 水基SiO纳米流体沸腾换热特性[J]. 化工学报, 2017, 68(11):4147-1453. XUE S W, LI Y Q, XIAO Z N, et al. Boiling heat transfer characteristics of water-based SiC2 nanofluids[J]. CIESC Journal, 2017, 68(11):4147-1453.
|
[6] |
许世民, 郎中敏, 王亚雄, 等. 羟基化多壁碳纳米管/R141b纳米流体核沸腾[J]. 化工学报, 2015, 66(11):4424-4430. XU S M, LANG Z M, WANG Y X, et al. Nucleate boiling nanofluids on smooth plate[J]. CIESC Journal, 2015, 66(11):4424-4430.
|
[7] |
ZHANG C, ZHANG L, XU H, et al. Investigation of flow boiling performance and the resulting surface deposition of graphene oxide nanofluide in microchannels[J]. Experimental Thermal and Fluid science, 2017, 86:1-10.
|
[8] |
阳倦成, 李凤臣, 周文武, 等. 黏弹性流体基铜纳米流体流动与传热实验研究[J]. 工程热物理学报, 2014, 35(2):366-370. YANG J C, LI F C, ZHOU W W, et al. Experimental investigation on flow and heat transfer of a viscoelastic fluid based Cu nanolfuids[J]. Journal of Engineering Thermophysics, 2014, 35(2):366-370.
|
[9] |
宣益民. 纳米流体能量传递理论与应用[J]. 中国科学:技术科学, 2014, 44(3):269-279. XUAN Y M. An overview on nanofluids and applications[J]. Science China Technological Sciences, 2014, 44(3):269-279.
|
[10] |
屈健, 吴慧英. 水/FC-72纳米乳液振荡热管传热特性研究[J]. 高校化学工程学报, 2012, 26(2):210-215. QU J, WU H Y. Experimental investigation on the heat transfer performance of a pulsation heat pipe charged with water/FC-72 nanoemulsion fluids[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(2):210-215.
|
[11] |
WANG X J, ZHU D S, YANG S. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids[J]. Chemical Physics Letters, 2009, 470(1/2/3):107-111.
|
[12] |
SUN B, PENG C, ZUO R, et al. Investigation on the flow and convective heat transfer characteristics of nanofluids in the plate heat exchanger[J]. Experimental Thermal & Fluid Science, 2016, 76:75-86.
|
[13] |
张睿. 纳米流体的稳定性、黏度及流动特性研究[D]. 镇江:江苏大学, 2014. ZHANG R. Study on stability, viscosity and characteristics of nanofluids[D]. Zhenjiang:Jiangsu University, 2014.
|
[14] |
MICHAEL J J, INIYAN S. Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide-water nanofluid[J]. Science Energy, 2015, 119:439-451.
|
[15] |
KIM S J, BANG I C, BUONGIORNO J, et al. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids[J]. Applied Physics Letters, 2006, 89(15):153107.
|
[16] |
柴永志, 张伟, 赵亚东, 等. 润湿性对微纳复合结构表面池沸腾换热的影响[J]. 高校化学工程学报, 2017, 31(4):984-990. CHAI Y Z, ZHANG W, ZHAO Y D, et al. Effects of wettability on pool boiling heat transfer of micro/nano-composite surface[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(4):984-990.
|
[17] |
陈宏霞, 黄林滨, 宫逸飞. 多孔结构及表面浸润性对池沸腾传热影响的研究进展[J]. 化工进展, 2017, 36(8):2798-2808. CHEN H X, HUANG L B, GONG Y F. Progress on boiling heat transfer from porous structure and surface wettability[J]. Chemical Industry and Engineering Progress, 2017, 36(8):2798-2808.
|
[18] |
TEODORI E, VALENTE T, MALAVASI I, et al. Effect of extreme wetting scenarios on pool boiling conditions[J]. Applied Thermal Engineering, 2017, 115:1424-1437.
|
[19] |
CHANG M H, LIU H S, TAI S Y. Preparation of copper oxide nanoparticles and application in nanofluid[J]. Powder Technology, 2011, 207:378-386.
|
[20] |
许世民, 郎中敏, 王亚雄, 等. 羧基化碳纳米管/水纳米流体核沸腾传热研究[J]. 工程热物理学报, 2017, V38(2):310-317. XU S M, LANG Z M, WANG Y X, et al. Nucleate boiling heat transfer characteristics on smooth plate with carboxylated carbon nanotubes/H2O Nanofluids[J]. Journal of Engineering Thermophysics, 2017, V38(2):310-317
|
[21] |
HAIDER S I, WEBB R L. A transient micro-convection model of nucleate pool boiling[J]. Heat Mass Transfer, 1997, 40(15):3675-3688.
|
[22] |
JUDD R L, HWANG K S. A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation[J]. Journal of Heat Transfer, 1976, 98(4):623-629.
|
[23] |
PHAN H T, MARTY N C P, COLASSON S, et al. Surface wettability control by nanocoating:the effects on pool boiling heat transfer and nucleation mechanism[J]. International Journal of Heat Transfer, 2009, 52:5459-5471.
|
[24] |
陈汉梽, 姚远, 公茂琼, 等. 乙烷池内核态沸腾气泡脱离直径[J]. 化工学报, 2018, 69(4):1419-1427. CHEN H Z, YAO Y, GONG M Q, et al.Experimental investigations on bubble departure diameter of ethane saturated nucleate pool boiling[J]. CIESC Journal, 2018, 69(4):1419-1427
|
[25] |
CHEN H Z, CHEN G F, ZOU X, et al. Experimental investigations on bubble departure diameter and frequency of methane saturated nucleate pool boiling at four different pressures[J]. International Journal of Heat and Mass Transfer, 2017, 112:662-675.
|
[26] |
ZUBBER N. Nucleate boiliong, the region of isolated bubbles and the similarity with nature convection[J]. International Journal of Heat and Mass Transfer, 1963, 6(1):53-78.
|
[27] |
KUMADA T, SAKASHITA H, YAMAGISHI H. Pool boiling heat transfer(Ⅰ):Measurement and semi-empirical relations of detachment frequencies of coalesced bubbles[J]. International Journal of Heat and Mass Transfer, 1995, 38(6):969-977.
|
[28] |
KUMADA T, SAKASHITA H. Pool boiling heat transfer(Ⅱ):Thickness of liquid macrolayer formed beneath vapor masses[J]. International Journal of Heat and Mass Transfer, 1995, 38(6):979-987.
|
[29] |
KRUIF C G D, IERSEL E M F V, VRIJ A, et al. Hard sphere colloidal dispersions:viscosity as a function of shear rate and volume fraction[J]. Journal of Chemical Physics, 1998, 83(9):4717-4725.
|
[30] |
BENJAMIN R J, BALAKRISHNAN A R. Nucleation site density in pool boiling of saturated pure liquids:effect of surface microroughness and surface and liquid physical properties[J]. Thermal Fluid Sci., 1997, 15(1):32-42.
|