[1] |
AKACHI H. Structure of a heat pipe:US4921041[P]. 1990-5-1.
|
[2] |
QU J, WU H Y, WANG Q. Experimental investigation of silicon-based micro-pulsating heat pipe for cooling electronics[J]. Nanoscale and Microscale Thermophysical Engineering, 2012, 16(1):37-49.
|
[3] |
孙芹, 屈健, 袁建平. 等截面和变截面通道硅基微型脉动热管传热特性比较[J]. 化工学报, 2017, 68(5):1803-1810. SUN Q, QU J, YUAN J P. Heat transfer performance comparison of silicon-based micro oscillating heat pipes with and without expanding channels[J]. CIESC Journal, 2016, 68(5):1803-1810.
|
[4] |
LV L, LI J, ZHOU G. A robust pulsating heat pipe cooler for integrated high power LED chips[J]. Heat and Mass Transfer, 2017, 53(11):3305-3313.
|
[5] |
RITTIDECH S, DONMAUNG A, KUMSOMBUT K. Experimental study of the performance of a circular tube solar collector with closedloop oscillating heat-pipe with check valve (CLOHP/CV)[J]. Renewable Energy, 2009, 34(10):2234-2238.
|
[6] |
KARGARSHARIFABAD H, MAMOURI S J, SHAFⅡ M B, et al. Experimental investigation of the effect of using closed-loop pulsating heat pipe on the performance of a flat plate solar collector[J]. Journal of Renewable and Sustainable Energy, 2013, 5:013106.
|
[7] |
XU R J, ZHANG X H, WANG R X, et al. Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator[J]. Energy Conversion and Management, 2017, 148:68-77.
|
[8] |
MITO T, NATSUME K, YANAGI N, et al. Development of highly effective cooling technology for a superconducting magnet using cryogenic OHP[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3):2023-2026.
|
[9] |
XU D, LI L, LIU H. Experimental investigation on the thermal performance of helium based cryogenic pulsating heat pipe[J]. Experimental Thermal and Fluid Science, 2016, 70:61-68.
|
[10] |
BURBAN G, AYEL V, ALEXANDRE A, et al. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications[J]. Applied Thermal Engineering, 2013, 50:94-103.
|
[11] |
QU J, WANG C, LI X, et al. Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management[J]. Applied Thermal Engineering, 2018, 135:1-9.
|
[12] |
屈健. 脉动热管技术研究及应用进展[J]. 化工进展, 2013, 32(1):33-41. QU J. Oscillating heat pipes:state of the art and applications[J]. Chemical Industry and Engineering Progress, 2013, 32(1):33-41
|
[13] |
QU J, WANG Q. Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling[J]. Applied Energy, 2013, 112:1154-1160.
|
[14] |
崔晓钰, 段威威, 乔铁梁, 等. 两组元乙醇基混合工质振荡热管的传热性能[J]. 化工学报, 2014, 65(10):2852-2860. CUI X Y, DUAN W W, QIAO T L, et al. Heat transfer performance of pulsating heat pipe with ethanol-based binary mixtures[J]. CIESC Journal, 2014, 65(10):2852-2860.
|
[15] |
李孝军, 屈健, 韩新月, 等. 微槽道脉动热管的启动及传热特性[J]. 化工学报, 2016, 67(6):2263-2270. LI X J, QU J, HAN X Y, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe[J]. CIESC Journal, 2016, 67(6):2263-2270.
|
[16] |
纪玉龙, 庾春荣, 张庆振, 等. 表面浸润程度对脉动热管传热性能的影响[J]. 化工学报, 2017, 68(S1):141-149. JI Y L, YU C R, ZHANG Q Z, et al. Effect of surface wettability on heat transfer performance of oscillating heat pipe[J]. CIESC Journal, 2017, 68(S1):141-149.
|
[17] |
郝婷婷, 马学虎, 兰忠, 等. 超疏水和超亲水表面对脉动热管性能的影响[J]. 工程热物理学报, 2015, 36(12):2670-2673. HAO T T, MA X H, LAN Z, et al. Experimental investigation of the effects of superhydrophobic and superhydrophilic surfaces on the pulsating heat pipe[J]. Journal of Engineering Thermophysics, 2015, 36(12):2670-2673.
|
[18] |
LIN Z, WANG S, HUO J, et al. Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes[J]. Applied Thermal Engineering, 2011, 31(14/15):2221-2229.
|
[19] |
HU C, JIA L. Experimental study on the start up performance of flat plate pulsating heat pipe[J]. Journal of Thermal Science, 2011, 20(2):150-154.
|
[20] |
LIU X, CHEN Y. Fluid flow and heat transfer in flat-plate oscillating heat pipe[J]. Energy and Buildings, 2014, 75:29-42.
|
[21] |
EBRAHIMI M, SHAFⅡ M B, BIJARCHI M A. Experimental investigation of the thermal management of flat-plate closed-loop pulsating heat pipes with interconnecting channels[J]. Applied Thermal Engineering, 2015, 90:838-847.
|
[22] |
YANG H, KHANDEKAR S, GROLL M. Performance characteristics of pulsating heat pipes as integral thermal spreaders[J]. International Journal of Thermal Sciences, 2009, 48(4):815-824.
|
[23] |
HEMADRI V A, GUPTA A, KHANDEKAR S. Thermal radiators with embedded pulsating heat pipes:infra-red thermography and simulations[J]. Applied Thermal Engineering, 2011, 31(6):1332-1346.
|
[24] |
AYEL V, ARANEO L, SCALAMBRA A, et al. Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force[J]. International Journal of Thermal Sciences, 2015, 96:23-34.
|
[25] |
THOMPSON S M, MA H B, WINHOLTZ R A, et al. Experimental investigation of miniature three-dimensional flat-plate oscillating heat pipe[J]. Journal of Heat Transfer, 2009, 131(4):043210.
|
[26] |
THOMPSON S M, CHENG P, MA H B. An experimental investigation of a three-dimensional flat-plate oscillating heat pipe with staggered microchannels[J]. International Journal of Heat and Mass Transfer, 2011, 54(17):3951-3959.
|
[27] |
BORGMEYER B, WILSON C, WINHOLTZ R A, et al. Heat transport capability and fluid flow neutron radiography of three-dimensional oscillating heat pipes[J]. Journal of Heat Transfer, 2010, 132(6):061502.
|
[28] |
MAYDANIK Y F, DMITRIN V I, PASTUKHOV V G. Compact cooler for electronics on the basis of a pulsating heat pipe[J]. Applied Thermal Engineering, 2009, 29(17/18):3511-3517.
|
[29] |
QU J, ZHAO J, RAO Z. Experimental investigation on the thermal performance of three-dimensional oscillating heat pipe[J]. International Journal of Heat and Mass Transfer, 2017, 109:589-600.
|
[30] |
YAO Z, LU Y W, KANDILIKAR S G. Effects of nanowire height on pool boiling performance of water on silicon chips[J]. International Journal of Thermal Sciences, 2011, 50(11):2084-2090.
|