[1] |
SAIDUR R, HASANUZZAMAN M, MAHLIA T M I, et al. Chillers energy consumption, energy savings and emission analysis in an institutional buildings[J]. Energy, 2011, 36(8):5233-5238.
|
[2] |
谷波, 韩华, 洪迎春, 等. 基于SVM的制冷系统多故障并发检测与诊断[J]. 化工学报, 2011, 62(S2):112-119. GU B, HAN H, HONG Y C, et al. SVM-based FDD of multiplesimultaneous faults for chillers[J]. CIESC Journal, 2011, 62(S2):112-119.
|
[3] |
HAN H, GU B, KANG J, et al. Study on a hybrid SVM model for chiller FDD applications[J]. Applied Thermal Engineering, 2011, 31(4):582-592.
|
[4] |
顾笑伟, 王智伟, 王占伟, 等. 基于密度权重支持向量数据描述的冷水机组故障检测[J]. 化工学报, 2017, 68(3):1099-1108. GU X W, WANG Z W, WANG Z W, et al. Chiller fault detection by density weighted support vector data description[J]. CIESC Journal, 2017, 68(3):1099-1108.
|
[5] |
李冠男, 胡云鹏, 陈焕新, 等. 基于SVDD的冷水机组传感器故障检测及效率分析[J]. 化工学报, 2015, 66(5):1815-1820. LI G N, HU Y P, CHEN H X, et al. SVDD-based chiller sensor fault detection method and its detection efficiency[J]. CIESC Journal, 2015, 66(5):1815-1820.
|
[6] |
ZHAO X Z, YANG M, LI H R. Decoupling features for fault detection and diagnosis on centrifugal chillers (1486-RP)[J]. HVAC&R Research, 2011, 17(1):86-106.
|
[7] |
DU Z M, FAN B, JIN X Q, et al. Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis[J]. Building and Environment, 2014, 73:1-11.
|
[8] |
ZHU Y H, JIN X Q, DU Z M. Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal[J]. Energy and Buildings, 2012, 44:7-16.
|
[9] |
TRAN D A T, CHEN Y M, CHAU M Q, et al. A robust online fault detection and diagnosis strategy of centrifugal chiller systems for building energy efficiency[J]. Energy and Buildings, 2015, 108:441-453.
|
[10] |
GUO Y B, LI G N, CHEN H X, et al. Modularized PCA method combined with expert-based multivariate decoupling for FDD in VRF systems including indoor unit faults[J]. Applied Thermal Engineering, 2017, 115:744-755.
|
[11] |
LI G N, HU Y P, CHEN H X, et al. An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm[J]. Energy and Buildings, 2016, 116:104-113.
|
[12] |
PEARL J. Fusion, propagation, and structuring in belief networks[J]. Artificial Intelligence, 1986, 29(3):241-288.
|
[13] |
NAJAFI M, AUSLANDER D M, BARTLETT P L, et al. Application of machine learning in the fault diagnostics of air handling units[J]. Applied Energy, 2012, 96:347-358.
|
[14] |
WALL J, GUO Y, LI J M, et al. A dynamic machine learning-based technique for automated fault detection in HVAC systems[J].ASHRAE Transactions, 2011, 117(2):449-456.
|
[15] |
ZHAO Y, XIAO F, WANG S W. An intelligent chiller fault detection and diagnosis methodology using Bayesian belief network[J]. Energy and Buildings, 2013, 57:278-288.
|
[16] |
ZHAO Y, WEN J, XIAO F, et al. Diagnostic Bayesian networks for diagnosing air handling units faults(I):Faults in dampers, fans, filters and sensors[J]. Applied Thermal Engineering, 2017, 111:1272-1286.
|
[17] |
XIAO F, ZHAO Y, WEN J, et al. Bayesian network based FDD strategy for variable air volume terminals[J]. Automation in Construction, 2014, 41:106-118.
|
[18] |
CAI B P, LIU Y H, FAN Q, et al. Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network[J]. Applied Energy, 2014, 114:1-9.
|
[19] |
HE S W, WANG Z W, WANG Z W, et al. Fault detection and diagnosis of chiller using Bayesian network classifier with probabilistic boundary[J]. Applied Thermal Engineering, 2016, 107:37-47.
|
[20] |
WANG Z W, WANG Z W, GU X W, et al. Feature selection based on Bayesian network for chiller fault diagnosis from the perspective of field applications[J]. Applied Thermal Engineering, 2018, 129:674-683.
|
[21] |
MADSEN A L. Belief update in CLG Bayesian networks with lazy propagation[J]. International Journal of Approximate Reasoning, 2008, 49(2):503-521.
|
[22] |
VERRON S, TIPLICA T, KOBI A. Fault diagnosis of industrial systems by conditional Gaussian network including a distance rejection criterion[J]. Engineering Applications of Artificial Intelligence, 2010, 23(7):1229-1235.
|
[23] |
ATOUI M A, VERRON S, KOBI A. Fault detection with conditional Gaussian network[J]. Engineering Applications of Artificial Intelligence, 2015, 45:473-481.
|
[24] |
COMSTOCK M C, BRAUN J E. Development of analysis tools for the evaluation of fault detection and diagnostics for chillers[R]. ASHRAE Research Project 1043-RP, HL 99-20, Report #4036-3, 1999.
|
[25] |
BRAUN J E. Automated fault detection and diagnostics for vapor compression cooling equipment[J]. Journal of Solar Engineering, 2003, 125(3):266-274.
|
[26] |
ZHAO X Z, YANG M, LI H R. Field implementation and evaluation of a decoupling-based fault detection and diagnostic method for chillers[J]. Energy and Buildings, 2014, 72:419-430.
|
[27] |
ZHAO Y, XIAO F, WEN J, et al. A robust pattern recognition-based fault detection and diagnosis (FDD) method for chillers[J]. HVAC&R Research, 2014, 20(7):798-809.
|
[28] |
KIM M, YOON S H, DOMANSKI P A, et al. Design of a steady-state detector for fault detection and diagnosis of a residential air conditioner[J]. International Journal of Refrigeration, 2008, 31(5):790-799.
|
[29] |
REDDY T A. Formulation of a generic methodology for assessing FDD methods and its specific adoption to large chillers[J]. ASHRAE Transactions, 2007, 113(2):334-342.
|
[30] |
COMSTOCK M C, BRAUN J E, GROLL E A. The sensitivity of chiller performance to common faults[J]. HVAC&R Research, 2001, 7(3):263-279.
|