[1] |
SUM T C, MATHEWS N. Advancements in perovskite solar cells:photophysics behind the photovoltaics[J]. Energy & Environmental Science, 2014, 7(8):2518-2534.
|
[2] |
MAMUN A A, AVA T T, NAMKOONG G, et al. A deconvoluted PL approach to probe the charge carrier dynamics of the grain interior and grain boundary of a perovskite film for perovskite solar cell applications[J]. Physical Chemistry Chemical Physics, 2017, 19:9143-9148.
|
[3] |
WOLF S D, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites:sharp optical absorption edge and its relation to photovoltaic performance[J]. Journal of Physical Chemistry Letters, 2014, 5(6):1035.
|
[4] |
WU X, LIU P, MA L, et al. Two-dimensional modeling of TiO2 nanowire based organic-inorganic hybrid perovskite solar cells[J]. Solar Energy Materials & Solar Cells, 2016, 152:111-117.
|
[5] |
BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316.
|
[6] |
LEE A Y, PARK D Y, JEONG M S. Correlational study of halogen tuning effect in hybrid perovskite single crystals with Raman scattering, X-ray diffraction, and absorption spectroscopy[J]. Journal of Alloys & Compounds, 2018, 738:239-245.
|
[7] |
BICCARI F, GABELLONI F, BURZI E, et al. Graphene-based electron transport layers in perovskite solar cells:a step-up for an efficient carrier collection[J]. Advanced Energy Materials, 2017, 7(22):1701349.
|
[8] |
SHI Z F, LI Y, ZHANG Y T, et al. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure[J]. Nano Letters, 2017, 17:313-321.
|
[9] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organo metal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050.
|
[10] |
YANG W S, PARK B W, JUNG E H, et al. Iodide management in formamidinium-ead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345):1376.
|
[11] |
YIN W J, YANG J H, KANG J, et al. Halide perovskite materials for solar cells:a theoretical review[J]. Acta Physico-Chimica Sinica, 2017, 3(17):8926-8942.
|
[12] |
HU X, ZHANH X, LIANG L, et al. High-performance flexible broadband photodetector based on organolead halide perovskite[J]. Advanced Functional Materials, 2014, 24(46):7373-7380.
|
[13] |
WANG Y, LI X, SONG J, et al. All-inorganic colloidal perovskite quantum dots:a new class of lasing materials with favorable characteristics[J]. Advanced Materials, 2015, 27(44):7101.
|
[14] |
HONG Z, YANG Y M, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility[J]. Acs Nano, 2014, 8(2):1674.
|
[15] |
WANG H, SAYEED M A, WANG T. Perovskite solar cells based on nanocrystalline SnO2 material with extremely small particle sizes[J]. Australian Journal of Chemistry, 2015, 68(8):6.
|
[16] |
AMBADE S B, AMBADE R B, BAGDE S S, et al. Low temperature solution processed thiophene sulfur-doped planar ZnO nanorods as electron transporting layers for enhanced performance of organic solar cells[J]. Acs Applied Materials & Interfaces, 2016, 9(4):3831.
|
[17] |
TIAN Z, LIANG C, LIU J, et al. Zinc stannate nanocubes and nanourchins with high photocatalytic activity for methyl orange and 2, 5-DCP degradation[J]. Journal of Materials Chemistry, 2012, 22(33):17210-17214.
|
[18] |
ZHU H J, LIANG Y, GAO X Y, et al. Effect of aluminum doping on the nanocrystalline ZnS:Al3+ film fabricated on heavily-doped p-type Si(100) substrates by chemical bath deposition method[J]. Brazilian Journal of Physics, 2015, 45(3):308-313.
|
[19] |
BUGOT C, SCHNEIDER N, JUBAULT M, et al. Temperature effect on zinc oxy-sulfide-Zn(O, S) film synthesized by atomic layer deposition for Cu(In, Ga)Se2 solar cells[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Film, 2015, 33(1):01A151.
|
[20] |
PERSSON C, PLATZER B C, MALMSTRÖM J, et al. Strong valence-band offset bowing of ZnO1-xSx enhances p-type nitrogen doping of ZnO-like alloys[J]. Physical Review Letters, 2006, 97(14):146403.
|
[21] |
BJÖRKMAN C P, TÖRNDAHL T, ABOURAS D, et al. Zn(O, S) buffer layers by atomic layer deposition in Cu(In, Ga)Se2 based thin film solar cells:Band alignment and sulfur gradient[J]. Journal of Applied Physics, 2006, 100(4):363.
|
[22] |
BEREZNEV S, KOCHARYAN H, MATICIUC N, et al. One-stage pulsed laser deposition of conductive zinc oxysulfide layers[J]. Applied Surface Science, 2017, 425:722-727.
|
[23] |
FRIJTERS C H, POODT P, ILLIBERI A. Atmospheric spatial atomic layer deposition of Zn(O, S) buffer layer for Cu(In, Ga)Se2 solar cells[J]. Solar Energy Materials & Solar Cells, 2016, 155:356-361.
|
[24] |
CHOI J H, JUNG S H, CHUNG C W. Characterization of Zn(O, S) buffer layers for Cu(In, Ga)Se2 solar cells[J]. J. Nanosci. Nanotechnol., 2016, 16(5):5378-5383.
|
[25] |
HARISKOS D, MENNER R, JACKSON P, et al. New reaction kinetics for a high-rate chemical bath deposition of the Zn(S, O) buffer layer for Cu(In, Ga)Se2 based solar cells[J]. Progress in Photovoltaics Research & Applications, 2012, 20(5):534-542.
|
[26] |
LI Y, LIU Z, DUO S, et al. Structural, optical, photocurrent and mechanism-induced photocatalytic properties of surface-modified ZnS thin film by chemical bath deposition[J]. Journal of Materials Science Materials in Electronics, 2017, 28(1):1-15.
|
[27] |
张光寅, 蓝国祥, 王玉芳.晶格振动光谱学[M]. 北京:高等教育出版社, 2001. ZHANG G Y, LAN G X, WANG Y F. Lattice Vibration Spectroscopy[M]. Beijing:Higher Education Press, 2001.
|
[28] |
HE Y, WANG L, ZHANG L, et al. Solubility limits and phase structures in epitaxial ZnOS alloy film grown by pulsed laser deposition[J]. Journal of Alloys & Compounds, 2012, 534(10):81-85.
|
[29] |
LI J, LIU X, LIU W, et al. Restraining the band fluctuation of CBD-Zn(O, S) layer modifying the hetero-junction interface for high performance Cu2ZnSnSe4 Solar Cells with Cd-free buffer layer[J]. Solar Rrl, 2017, 1(10):1700075.
|
[30] |
SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354(6309):206.
|