CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 1188-1197.DOI: 10.11949/j.issn.0438-1157.20180895
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xiaoshi LIU(),Deqiu ZOU(),Ruijun HE,Xianfeng MA
Received:
2018-08-03
Revised:
2018-11-10
Online:
2019-03-05
Published:
2019-03-05
Contact:
Deqiu ZOU
通讯作者:
邹得球
作者简介:
<named-content content-type="corresp-name">刘小诗</named-content>(1992—),男,硕士研究生,<email>1563940515@qq.com</email>|邹得球(1981—),男,博士,副教授,<email>zoudeqiu@nbu.edu.cn</email>
基金资助:
CLC Number:
Xiaoshi LIU, Deqiu ZOU, Ruijun HE, Xianfeng MA. Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions[J]. CIESC Journal, 2019, 70(3): 1188-1197.
刘小诗, 邹得球, 贺瑞军, 马先锋. 氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性[J]. 化工学报, 2019, 70(3): 1188-1197.
Parameter | Uncertainty/% |
---|---|
L | ±0.29 |
D | ±0.1 |
qm | ±0.2 |
ΔP | ±1.1 |
Re | ±0.9 |
h | ±1.7 |
Table 1 Experimental uncertainties
Parameter | Uncertainty/% |
---|---|
L | ±0.29 |
D | ±0.1 |
qm | ±0.2 |
ΔP | ±1.1 |
Re | ±0.9 |
h | ±1.7 |
Test sample | Thermal conductivity/(W/(m·K)) |
---|---|
water | 0.599 |
PCE | 0.359 |
0.01%(mass)GO | 0.431 |
0.02%(mass)GO | 0.469 |
0.03%(mass)GO | 0.485 |
Table 2 Thermal conductivity of GO/paraffin PCE with different mass fractions
Test sample | Thermal conductivity/(W/(m·K)) |
---|---|
water | 0.599 |
PCE | 0.359 |
0.01%(mass)GO | 0.431 |
0.02%(mass)GO | 0.469 |
0.03%(mass)GO | 0.485 |
1 | 黄莉.石蜡/水相变乳液的制备与性能[J]. 化工学报, 2018, 69(4): 1749-1757. |
HuangL.Preparation and properties of paraffin/water phase change emulsion[J]. CIESC Journal, 2018, 69(4): 1749-1757. | |
2 | 刘东, 何蔚然, 钟小龙, 等.潜热型功能热流体在微小管道内的换热特性[J]. 化工进展, 2016, 35(10): 3042-3048. |
LiuD, HeW R, ZhongX L, et al.The heat transfer characteristics of latent functionally thermal fluid in micro tube[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3042-3048. | |
3 | ZouD, FengZ, XiaoR, et al.Preparation and flow characteristic of a novel phase change fluid for latent heat transfer[J]. Solar Energy Materials & Solar Cells, 2010, 94(12): 2292-2297. |
4 | KumaresanV, ChandrasekaranP, NandaM, et al.Role of PCM based nanofluids for energy efficient cool thermal storage system[J]. International Journal of Refrigeration, 2013, 36(6): 1641-1647. |
5 | LiuJ, XuC, ChenL L, et al.Preparation and photo-thermal conversion performance of modified graphene/ionic liquid nanofluids with excellent dispersion stability[J]. Solar Energy Materials & Solar Cells, 2017, 170: 219-232. |
6 | GhorbaniH R.Preparation of copper nanofluids using an appropriate technique[J]. Oriental Journal of Chemistry, 2014, 30(4): 2025-2028. |
7 | LiD, HongB, FangW, et al.Preparation of well-dispersed silver nanoparticles for oil-based nanofluids[J]. Industrial & Engineering Chemistry Research, 2010, 49(4): 1697-1702. |
8 | LiuM S, LinC C, TsaiC Y, et al.Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method[J]. International Journal of Heat & Mass Transfer, 2006, 49(17): 3028-3033. |
9 | MadheshD, KalaiselvamS.Experimental study on the heat transfer and flow properties of Ag-ethylene glycol nanofluid as a coolant[J]. Heat & Mass Transfer, 2014, 50(11): 1597-1607. |
10 | DasS K, PutraN, ThiesenP, et al.Temperature dependence of thermal conductivity enhancement for nanofluids[J]. Journal of Heat Transfer, 2003, 125(4): 567. |
11 | 常强.碳纳米管纳米流体传热特性实验研究[D]. 青岛: 青岛科技大学, 2015. |
ChangQ.Experimental study on the thermal conductivity of carbon nanotubes nanofluids[J]. Qingdao: Qingdao University of Science and Technology, 2015. | |
12 | 向军,李菊香.纳米悬浮液的有效导热系数[J]. 低温与超导, 2009, 37(1): 59-62. |
XiangJ, LiJ X.Effective thermal conductiv ity of nanoparticles suspension[J]. Cryo. & Supercond, 2009, 37(1): 59-62. | |
13 | MorimotoT, TogashiK, KumanoH, et al.Thermophysical properties of phase change emulsions prepared by D-phase emulsification[J]. Energy Conversion & Management, 2016, 122: 215-222. |
14 | ZhangX, WuJ Y, NiuJ.PCM-in-water emulsion for solar thermal applications: the effects of emulsifiers and emulsification conditions on thermal performance, stability and rheology characteristics[J]. Solar Energy Materials & Solar Cells, 2016, 147: 211-224. |
15 | HoC J, GaoJ Y.Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material [J]. International Communications in Heat & Mass Transfer, 2009, 36(5): 467-470. |
16 | ZhengY F, QiuZ Z, ChenJ.The investigation of phase change emulsion (PCE): fabrication, thermal conductivity and utilization of nanoparticles[J]. Advanced Materials Research, 2014, 860-863: 862-866. |
17 | 邹得球, 肖睿, 何世辉, 等.基于纳米粒子/相变石蜡乳状液的研究[J]. 材料导报, 2009, 23(15): 103-107. |
ZouD Q, XiaoR, HeS H, et al.Research based on nanoparticles/ phase change wax emulsion[J]. Materials Review, 2009, 23(15): 103-107. | |
18 | 杨志涛, 张军强, 宗冬冬, 等.SiO2改性石墨烯–石蜡复合相变乳液的制备及热性能[J]. 新能源进展, 2017, 5(2): 110-116. |
YangZ T, ZhangJ Q, ZongD D, et al.Preparation and thermal properties of SiO2 modified graphene-paraffin composite phase change emulsions[J]. Advances in New and Renewable Energy, 2017, 5(2): 110-116. | |
19 | 毛凌波, 梁志彬, 林敬堂, 等.纳米材料增强石蜡相变乳状液在太阳能中的应用[J]. 太阳能学报, 2016, 37(1): 142-146. |
MaoL B, LiangZ B, LinJ T, et al.Nanomaterials enhanced phase change wax emulisions used in the solar energy[J]. Acta Energiae Solaris Sinica, 2016, 37(1): 142-146. | |
20 | WangF, ZhangC, LiuJ, et al.Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage[J]. Applied Energy, 2017, 188: 97-106. |
21 | WangF, LiuJ, FangX, et al.Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance[J]. Solar Energy Materials & Solar Cells, 2016, 147: 101-107. |
22 | YuW, XieH, BaoD.Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets[J]. Nanotechnology, 2010, 21(5): 055705. |
23 | GuptaS S, SivaV M, KrishnanS, et al.Thermal conductivity enhancement of nanofluids containing graphene nanosheets[J]. Journal of Applied Physics, 2011, 110(8): 902. |
24 | YuW, XieH, ChenW.Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets[J]. Journal of Applied Physics, 2010, 107(9): 666. |
25 | KausarA.Enhanced electrical and thermal conductivity of modified poly(acrylonitrile-co-butadiene)-based nanofluid containing functional carbon black-graphene oxide[J]. Fullerene Science & Technology, 2016, 24(4): 278-285. |
26 | RanjbarzadehR, KarimipourA, AfrandM, et al.Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe[J]. Applied Thermal Engineering, 2017, 126: 538-547. |
27 | ÖzerinçS, KakaçS, YaziciogluA G.Enhanced thermal conductivity of nanofluids: a state-of-the-art review[J]. Microfluidics & Nanofluidics, 2010, 8(2): 145-170. |
28 | KibriaM A, AnisurM R, MahfuzM H, et al.A review on thermophysical properties of nanoparticle dispersed phase change materials[J]. Energy Conversion & Management, 2015, 95: 69-89. |
29 | 刘彦丰, 高正阳, 梁秀俊.传热学[M]. 北京:中国电力出版社, 2015: 54. |
LiuY F, GaoZ Y, LiangX J, et al.Heat Transfer[M]. Beijing: China Electric Power Press, 2015: 54. | |
30 | MoffatR J.Describing the uncertainties in experimental results[J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17. |
31 | MaZ W, ZhangP, WangR Z, et al.Forced flow and convective melting heat transfer of clathrate hydrate slurry in tubes[J]. International Journal of Heat & Mass Transfer, 2010, 53(19): 3745-3757. |
32 | MaZ W, ZhangP.Pressure drops and loss coefficients of a phase change material slurry in pipe fittings[J]. International Journal of Refrigeration, 2012, 35(4): 992-1002. |
33 | 张飞龙, 王莉, 俞树荣, 等.氧化石墨烯及其导热纳米流体的制备与性能[J]. 功能材料, 2015, 46(16): 16138-16141. |
ZhangL F, WangL, YuS R, et al.Preparation and properties of graphene oxide and its thermally conductive nanofluid[J].Journal of Functional Materials, 2015, 46(16): 16138-16141. | |
34 | FotukianS M, EsfahanyM N.Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube[J]. International Communications in Heat & Mass Transfer, 2010, 37(2): 214-219. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[7] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[8] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[13] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[14] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[15] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 429
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||