CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 207-213.DOI: 10.11949/j.issn.0438-1157.20180918
• Energy and environmental engineering • Previous Articles Next Articles
Fei YIN(),Cui WANG,Shaoping TONG(
)
Received:
2018-08-13
Revised:
2018-09-16
Online:
2019-01-05
Published:
2019-01-05
Contact:
Shaoping TONG
通讯作者:
童少平
作者简介:
尹飞(1992—),男,硕士研究生,<email>1511950303@qq.com</email>|童少平(1971—),男,教授,<email>sptong@zjut.edu.cn</email>
基金资助:
CLC Number:
Fei YIN, Cui WANG, Shaoping TONG. Treatment of acid red 73 by persulfate in the presence of rGO-Fe3O4 composite[J]. CIESC Journal, 2019, 70(1): 207-213.
尹飞, 王翠, 童少平. rGO-Fe3O4活化过硫酸盐处理酸性红73[J]. 化工学报, 2019, 70(1): 207-213.
Target pollutant | Concentration | Catalyst | Reaction conditions | Reaction time | Ref. |
---|---|---|---|---|---|
acid red 73(AR73) | 50 mg/L | rGO-Fe3O4m(Fe3O4):m(rGO)=10:1 | catalyst 1.0 g/L; PS 1.0 g/L; pH=6.9 | 10 min | — |
methylene blue | 0.05 mmol/L | Fe3O4/GO m(Fe3O4):m(GO)=1:2 | catalyst 0.15 g/L; PS 1.5 mmol/L; pH=6.0 | 120 min | [19] |
trichloroethylene (TCE) | 0.15 mmol/L | nFe3O4/rGO m(Fe3O4):m(rGO)=1:4 | catalyst 6.94 g/L; PS 3 mmol/L; pH=6.2 | 5 min | [20] |
Table 1 Comparison between this work and relative works
Target pollutant | Concentration | Catalyst | Reaction conditions | Reaction time | Ref. |
---|---|---|---|---|---|
acid red 73(AR73) | 50 mg/L | rGO-Fe3O4m(Fe3O4):m(rGO)=10:1 | catalyst 1.0 g/L; PS 1.0 g/L; pH=6.9 | 10 min | — |
methylene blue | 0.05 mmol/L | Fe3O4/GO m(Fe3O4):m(GO)=1:2 | catalyst 0.15 g/L; PS 1.5 mmol/L; pH=6.0 | 120 min | [19] |
trichloroethylene (TCE) | 0.15 mmol/L | nFe3O4/rGO m(Fe3O4):m(rGO)=1:4 | catalyst 6.94 g/L; PS 3 mmol/L; pH=6.2 | 5 min | [20] |
1 | 夏文君, 刘锋, 郝尚斌, 等. 石墨烯负载铁锰氧化物活化过一硫酸盐降解金橙G[J]. 环境科学, 2018,39(5): 2202-2210. |
XiaW J, LiuF, HaoS B, et al. Degradation of OG with peroxymonosulfate activated by a MnFe2O4-graphene hybrid [J]. Environmental Science, 2018, 39(5): 2202-2210. | |
2 | ZhaoX F, NiuC G, ZhangL, et al. Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate[J]. Chemosphere, 2018, 204: 11-21. |
3 | PuM J, GuanZ Y, MaY W, et al. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution[J]. Applied Catalysis A General, 2017, 549: 82-92. |
4 | WangY B, CaoD, ZhaoX. Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoOx-doped ordered mesoporous carbon[J]. Chemical Engineering Journal, 2017, 328: 1112-1121. |
5 | WangJ J, WangC, TongS P. A novel composite Fe-N/O catalyst for the effective enhancement of oxidative capacity of persulfate at ambient temperature[J]. Catalysis Communications, 2017, 103: 105-109. |
6 | MaJ Q, YangQ F, WenY Z, et al. Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range[J]. Applied Catalysis B Environmental, 2017, 201: 232-240. |
7 | GagolM, PrzyjaznyA, BoczkajG. Wastewater treatment by means of advanced oxidation processes based on cavitation — a review[J]. Chemical Engineering Journal, 2018, 338: 599-627. |
8 | TanC Q, GaoN Y, DengY, et al. Radical induced degradation of acetaminophen with Fe3O4, magnetic nanoparticles as heterogeneous activator of peroxymonosulfate[J]. Journal of Hazardous Materials, 2014, 276(9): 452-460. |
9 | GengZ G, LinY, YuX X, et al. Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent[J]. Journal of Materials Chemistry, 2012, 22(8): 3527-3535. |
10 | Gonzalez-OlmosR, MartinM J, GeorgiA, et al. Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH[J]. Applied Catalysis B Environmental, 2012, 125(3): 51-58. |
11 | JafariA J, KakavandiB, JaafarzadehN, et al. Heterogeneous Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4, as a heterogeneous persulfate activator: adsorption and degradation studies[J]. Journal of Industrial & Engineering Chemistry, 2016, 45: 323-333. |
12 | ZhouL C, ZhangH, JiL Q, et al. Fe3O4/MWCNT as a heterogeneous Fenton catalyst: degradation pathways of tetrabromobisphenol A[J]. RSC Advances, 2014, 4(47): 24900-24908. |
13 | 刘芳, 樊丰涛, 吕玉翠, 等. 石墨烯/TiO2复合材料光催化降解有机污染物的研究进展[J]. 化工学报, 2016, 67(5): 1635-1643. |
LiuF, FanF T, LüY C, et al. Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J]. CIESC Journal, 2016, 67(5): 1635-1643. | |
14 | FarooqU, DanishM, LuS, et al. A step forward towards synthesizing a stable and regeneratable nanocomposite for remediation of trichloroethene[J]. Chemical Engineering Journal, 2018, 347: 660-668. |
15 | ParkC M, HeoJ, WangD J, et al. Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water[J]. Applied Catalysis B Environmental, 2017, 225: 91-99. |
16 | YuL, ChenJ D, LiangZ, et al. Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst[J]. Separation & Purification Technology, 2016, 171: 80-87. |
17 | GongX B. Degradation of dye wastewater by persulfate activated with Fe3O4/graphene nanocomposite[J]. Journal of Water Reuse & Desalination, 2016, 6(4): 553-561. |
18 | YanJ C, GaoW G, DongM G, et al. Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle[J]. Chemical Engineering Journal, 2016, 295: 309-316. |
19 | DuanX G, AoZ M, ZhouL, et al. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation[J]. Applied Catalysis B Environmental, 2016, 188: 98-105. |
20 | NieG, HuangJ, HuY Z, et al. Heterogeneous catalytic activation of peroxymonosulfate for efficient degradation of organic pollutants by magnetic Cu0/Fe3O4 submicron composites[J]. Chinese Journal of Catalysis, 2017, 38(2): 227-239. |
21 | ZubirN A, YacouC, MotuzasJ, et al. Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction[J]. Scientific Reports, 2014, 4(6179): 4594. |
22 | BekrisL, FrontistisZ, TrakakisG, et al. Graphene: a new activator of sodium persulfate for the advanced oxidation of parabens in water[J]. Water Research, 2017, 126: 111-121. |
23 | RenX H, GuoH H, FengJ K, et al. Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel[J]. Chemosphere, 2017, 191: 389-399. |
24 | JaafarzadehN, GhanbariF, AhmadiM. Catalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3 activated peroxymonosulfate: influential factors and mechanism determination[J]. Chemosphere, 2017, 169: 568-576. |
25 | OhW D, DongZ L, LimT T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects[J]. Applied Catalysis B Environmental, 2016, 194: 169-201. |
26 | LiJ, RenY, JiF Z, et al. Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4, magnetic nano-particles[J]. Chemical Engineering Journal, 2017, 324: 63-73. |
27 | WangJ L, WangS Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
28 | WangJ J, DingY L, TongS P. Fe-Ag/GAC catalytic persulfate to degrade Acid Red 73[J]. Separation & Purification Technology, 2017, 184: 365-373. |
29 | JiF, LiC L, WeiX Y, et al. Efficient performance of porous Fe2O3 in heterogeneous activation of peroxymonosulfate for decolorization of Rhodamine B[J]. Chemical Engineering Journal, 2013, 231: 434-440. |
30 | ChengX, GuoH G, ZhangY L, et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes[J]. Water Research, 2017, 113: 80-88. |
31 | ZhaoQ X, MaoQ M, ZhouY Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications[J]. Chemosphere, 2017, 189: 224-238. |
32 | YunE T, LeeJ H, KimJ, et al. Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer[J]. Environmental Science & Technology, 2018, 52(12): 7032-7042. |
[1] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[2] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[3] | Shiyuan HUANG, Jian DENG, Hanqin YUAN, Guohua WANG, Xingliang WU. Experimental study on activation of peroxymonosulfate by cobalt-enhanced ferromagnet [J]. CIESC Journal, 2022, 73(7): 3045-3056. |
[4] | Yongsheng WANG, Xiaolin LAN, Tian QIU, Xinping ZHANG, Yingying WU, Li CHEN, Weixiang XU, Dongjie GUO, Zhengkang DUAN. Synthesis and characterization of copper-based graphene composite catalyst [J]. CIESC Journal, 2020, 71(6): 2889-2899. |
[5] | Huachao GUO, Bo YANG, Guojia HUANG, Qingyong XU, Shuang LI, Zhenling WU. Preparation and properties of polyvinylidene fluoride/graphene composites [J]. CIESC Journal, 2020, 71(4): 1881-1888. |
[6] | Yanjun XU, Zehai XU, Qin MENG, Chong SHEN, Rui HOU, Guoliang ZHANG. Preparation and performance of novel rGO/uCN composite nanofiltration membrane [J]. CIESC Journal, 2019, 70(9): 3565-3572. |
[7] | WENG Chengjie, SHI Yexun, HE Dafang, SHEN Liming, BAO Ningzhong. Hydrothermal synthesis of reduced graphene oxide with tunable conductivity [J]. CIESC Journal, 2018, 69(7): 3263-3269. |
[8] | FAN Peng, CHEN Jie, GUAN Xiaohong, QIAO Junlian. Enhanced nitrobenzene removal by persulfate-assisted zerovalent iron [J]. CIESC Journal, 2018, 69(5): 2175-2182. |
[9] | FENG Hao, XIONG Yuanquan, WU Bo. Electrochemical production of ammonium persulfate using absorption solution from ammonia-based wet desulfurization and denitrification [J]. CIESC Journal, 2017, 68(12): 4691-4701. |
[10] | YANG Rong, LI Lan, WANG Liqing, FU Xin, YAN Yinglin, CHEN Liping, LU Leilei. Preparation of reduced graphene oxide by microwave method and its application in lithium-sulfur batteries [J]. CIESC Journal, 2017, 68(11): 4333-4340. |
[11] | YUAN Peixin, ZHENG Chenyu, CUI Hongda, WAN Ying, YAO Chuanguang, SONG Hongxin, DENG Shengyuan. Noncovalent functionalization of graphene for sensitizing SPR-based DNA sensing synergistically with biocatalytic polymerization [J]. CIESC Journal, 2016, 67(S2): 245-254. |
[12] | HAN Xiaodong, ZHAO Zhiwei, LI Xuehua, SHI Chenyan. One-step synthesis of stable hydrosoluble dispersion of reduced graphene oxide in presence of poly (sodium 4-styrenesulfonate) [J]. CIESC Journal, 2016, 67(S1): 396-401. |
[13] | RONG Yayun, SHI Linli, ZHANG Chen, ZOU Lihua, XU Ying, ZHU Junjun, CHEN Liwei, XU Yong, YONG Qiang, YU Shiyuan. Oxidation of lignin-degradation products by heat-activated persulfate [J]. CIESC Journal, 2016, 67(6): 2618-2624. |
[14] | ZHENG Haiyan, SUN Yu, DONG Yue, SHEN Fengman, GU Jian. Loss of vanadium and iron in calcified roasting and acid leaching of vanadium-bearing titanomagnetite [J]. CIESC Journal, 2015, 66(3): 1019-1025. |
[15] | DENG Jing, FENG Shanfang, MA Xiaoyan, SHAO Yisheng, GAO Naiyun, LI Jun. Degradation of carbamazepine in water by thermally activated persulfate [J]. CIESC Journal, 2015, 66(1): 410-418. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 546
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||