CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 2207-2216.DOI: 10.11949/0438-1157.20230146
• Energy and environmental engineering • Previous Articles Next Articles
Ruikang LI1(), Yingying HE1(), Weipeng LU1, Yuanyuan WANG2, Haodong DING1, Yongming LUO1
Received:
2023-02-22
Revised:
2023-05-06
Online:
2023-06-29
Published:
2023-05-05
Contact:
Yingying HE
李瑞康1(), 何盈盈1(), 卢维鹏1, 王园园2, 丁皓东1, 骆勇名1
通讯作者:
何盈盈
作者简介:
李瑞康(1997—),女,硕士研究生,3041446231@qq.com
基金资助:
CLC Number:
Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate[J]. CIESC Journal, 2023, 74(5): 2207-2216.
李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216.
催化剂 | 反应条件 | LEV降解率/COD或TOC去除率 | 文献 |
---|---|---|---|
rose petal derived Co3O4/MC | 10 mg·L-1 LEV, 0.3 mmol·L-1 PMS, pH 5.5 | 100% (12 min) | [ |
SrCoO3/MnFe2O4/MoS2 | 20 mg·L-1 LEV, 1 g·L-1 PMS, pH 6 | 95.1% (20 min) | [ |
CoFe2O4 | 20 mg·L-1 LEV, 20 mmol·L-1 PMS, pH 5.6, 15 mA·cm-2 | 91.7% (40 min)/30.6%(TOC 40 min) | [ |
MgO/Co3O4 | 10 mg·L-1 LEV, 300 mg·L-1 PMS, pH 5 | 96.9% (20 min)/38.5%(TOC 20 min) | [ |
Co3O4/NF | 20 mg·L-1 LEV, 3.5 mmol·L-1 PMS, pH 3.0, 4 mA·cm-2 | 95.8% (40 min)/73.3%(COD 55 min) | 本文 |
Table 1 Comparison of the LEV degradation
催化剂 | 反应条件 | LEV降解率/COD或TOC去除率 | 文献 |
---|---|---|---|
rose petal derived Co3O4/MC | 10 mg·L-1 LEV, 0.3 mmol·L-1 PMS, pH 5.5 | 100% (12 min) | [ |
SrCoO3/MnFe2O4/MoS2 | 20 mg·L-1 LEV, 1 g·L-1 PMS, pH 6 | 95.1% (20 min) | [ |
CoFe2O4 | 20 mg·L-1 LEV, 20 mmol·L-1 PMS, pH 5.6, 15 mA·cm-2 | 91.7% (40 min)/30.6%(TOC 40 min) | [ |
MgO/Co3O4 | 10 mg·L-1 LEV, 300 mg·L-1 PMS, pH 5 | 96.9% (20 min)/38.5%(TOC 20 min) | [ |
Co3O4/NF | 20 mg·L-1 LEV, 3.5 mmol·L-1 PMS, pH 3.0, 4 mA·cm-2 | 95.8% (40 min)/73.3%(COD 55 min) | 本文 |
1 | Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225(1/2): 109-118. |
2 | Xu Z Q, Jiang J, Wang M, et al. Enhanced levofloxacin degradation by hierarchical porous Co3O4 with rich oxygen vacancies activating peroxymonosulfate: performance and mechanism[J]. Separation and Purification Technology, 2023, 304: 122055. |
3 | Wang J L, Wang S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
4 | Olmez-Hanci T, Arslan-Alaton I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J]. Chemical Engineering Journal, 2013, 224: 10-16. |
5 | Qi C D, Liu X T, Ma J, et al. Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants[J]. Chemosphere, 2016, 151: 280-288. |
6 | Zhang X K, Liu J, Zhang H Z, et al. Uncovering the pathway of peroxymonosulfate activation over Co0.5Zn0.5O nanosheets for singlet oxygen generation: performance and membrane application[J]. Applied Catalysis B: Environmental, 2023, 327: 122429. |
7 | Lu C, Zhang S L, Wang J, et al. Efficient activation of peroxymonosulfate by iron-containing mesoporous silica catalysts derived from iron tailings for degradation of organic pollutants[J]. Chemical Engineering Journal, 2022, 446: 137044. |
8 | Han X L, Zhang W, Li S, et al. Mn-MOF derived manganese sulfide as peroxymonosulfate activator for levofloxacin degradation: an electron-transfer dominated and radical/nonradical coupling process[J]. Journal of Environmental Sciences, 2023, 130: 197-211. |
9 | Mi X Y, Zhong H, Zhang H X, et al. Facilitating redox cycles of copper species by pollutants in peroxymonosulfate activation[J]. Environmental Science & Technology, 2022, 56(4): 2637-2646. |
10 | Wang F X, Zhang Z C, Yi X H, et al. A micron-sized Co-MOF sheet to activate peroxymonosulfate for efficient organic pollutant degradation[J]. CrystEngComm, 2022, 24(31): 5557-5561. |
11 | Zhang W W, He Y C, Li C, et al. Persulfate activation using Co/AC particle electrodes and synergistic effects on humic acid degradation[J]. Applied Catalysis B: Environmental, 2021, 285: 119848. |
12 | Li Z L, Wang M, Jin C Y, et al. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 392: 123789. |
13 | Sun X P, Liu Z B, Sun Z R. Electro-enhanced degradation of atrazine via Co-Fe oxide modified graphite felt composite cathode for persulfate activation[J]. Chemical Engineering Journal, 2022, 433: 133789. |
14 | Yan C, Liu L. Oxidation of gas phase ammonia via accelerated generation of radical species and synergy of photo electrochemical catalysis with persulfate activation by CuO-Co3O4 on cathode electrode[J]. Journal of Hazardous Materials, 2020, 388: 121793. |
15 | Tang S F, Zhao M Z, Yuan D L, et al. MnFe2O4 nanoparticles promoted electrochemical oxidation coupling with persulfate activation for tetracycline degradation[J]. Separation and Purification Technology, 2021, 255(7): 117690. |
16 | Zhao C, Meng L H, Chu H Y, et al. Ultrafast degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe3C/Fe@N-C-x: singlet oxygen evolution and electron-transfer mechanisms[J]. Applied Catalysis B: Environmental, 2023, 321: 122034. |
17 | Chen M M, Niu H Y, Niu C G, et al. Metal-organic framework-derived CuCo/carbon as an efficient magnetic heterogeneous catalyst for persulfate activation and ciprofloxacin degradation[J]. Journal of Hazardous Materials, 2022, 424: 127196. |
18 | Zhou H J, Lu D X, Fang S Q, et al. Prompting direct single electron transfer to produce non-radical 1O2/H* by electro-activating peroxydisulfate process with core-shell cathode[J]. Journal of Environmental Management, 2021, 287: 112294. |
19 | Di J, Zhu M Z, Jamakanga R, et al. Electrochemical activation combined with advanced oxidation on NiCo2O4 nanoarray electrode for decomposition of Rhodamine B[J]. Journal of Water Process Engineering, 2020, 37: 101386. |
20 | Dang Y, Bai Y Y, Zhang Y C, et al. Tannic acid reinforced electro-Fenton system based on GO-Fe3O4/NF cathode for the efficient catalytic degradation of PNP[J]. Chemosphere, 2022, 289: 133046. |
21 | He Y X, Qian J, Wang P F, et al. Acceleration of levofloxacin degradation by combination of multiple free radicals via MoS2 anchored in manganese ferrite doped perovskite activated PMS under visible light[J]. Chemical Engineering Journal, 2022, 431: 133933. |
22 | Zhang Q Y, Sun X Q, Dang Y, et al. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe2O4 synergistic catalysis for the efficient removal of levofloxacin[J]. Journal of Hazardous Materials, 2022, 424: 127651. |
23 | Xue X J, Liao W D, Liu D L, et al. MgO/Co3O4 composite activated peroxymonosulfate for levofloxacin degradation: role of surface hydroxyl and oxygen vacancies[J]. Separation and Purification Technology, 2023, 306: 122560. |
24 | Ren W, Zhou P, Nie G, et al. Hydroxyl radical dominated elimination of plasticizers by peroxymonosulfate on metal-free boron: kinetics and mechanisms[J]. Water Research, 2020, 186: 116361. |
25 | Dong Z T, Niu C G, Guo H, et al. Anchoring CuFe2O4 nanoparticles into N-doped carbon nanosheets for peroxymonosulfate activation: built-in electric field dominated radical and non-radical process[J]. Chemical Engineering Journal, 2021, 426: 130850. |
26 | Wang Z P, Wang J W, Xiong B, et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: efficiency and mechanisms[J]. Environmental Science & Technology, 2020, 54(1): 464-475. |
27 | Liu G F, Li X C, Han B J, et al. Efficient degradation of sulfamethoxazole by the Fe(Ⅱ)/HSO 5 - process enhanced by hydroxylamine: efficiency and mechanism[J]. Journal of Hazardous Materials, 2017, 322: 461-468. |
28 | Ahn Y Y, Bae H, Kim H I, et al. Surface-loaded metal nanoparticles for peroxymonosulfate activation: efficiency and mechanism reconnaissance[J]. Applied Catalysis B: Environmental, 2019, 241: 561-569. |
29 | Jin Y Z, Feng X J, Yang A Q, et al. Peroxymonosulfate activation by brownmillerite-type oxide Ca2Co2O5 for efficient degradation of pollutants via direct electron transfer and radical pathways[J]. Separation and Purification Technology, 2021, 278: 119619. |
30 | Zhou J H, Li X S, Yuan J, et al. Efficient degradation and toxicity reduction of tetracycline by recyclable ferroferric oxide doped powdered activated charcoal via peroxymonosulfate (PMS) activation[J]. Chemical Engineering Journal, 2022, 441: 136061. |
31 | Huang Q Q, Zhang J Y, He Z Y, et al. Direct fabrication of lamellar self-supporting Co3O4/N/C peroxymonosulfate activation catalysts for effective aniline degradation[J]. Chemical Engineering Journal, 2017, 313: 1088-1098. |
32 | Kim D G, Ko S O. Effects of thermal modification of a biochar on persulfate activation and mechanisms of catalytic degradation of a pharmaceutical[J]. Chemical Engineering Journal, 2020, 399: 125377. |
33 | Yuan X J, Shen D Y, Zhang Q, et al. Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline[J]. Chemical Engineering Journal, 2019, 369: 292-301. |
34 | Zhang H X, Li C W, Lyu L, et al. Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification[J]. Applied Catalysis B: Environmental, 2020, 270: 118874. |
35 | Wu L P, Li B, Li Y, et al. Preferential growth of the cobalt (200) facet in Co@N-C for enhanced performance in a Fenton-like reaction[J]. ACS Catalysis, 2021, 11(9): 5532-5543. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[9] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[10] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[11] | Xinlong YAN, Zhigang HUANG, Qingxun HU, Xin ZHANG, Xiaoyan HU. Catalytic nitrophenol degradation via peroxymonosulfate activation over Cu/Co doped porous carbon [J]. CIESC Journal, 2023, 74(3): 1102-1112. |
[12] | Qingyun YANG, Qingsong LI, Zeming CHEN, Jing DENG, Yuying LI, Fan YANG, Guoyuan CHEN, Guoxin LI. Degradation of methylparaben by UV/PMS, UV/PDS and UV/SPC process [J]. CIESC Journal, 2023, 74(3): 1322-1331. |
[13] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[14] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[15] | Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis [J]. CIESC Journal, 2023, 74(2): 535-545. |
Viewed | ||||||||||||||||||||||
Full text 147
|
|
|||||||||||||||||||||
Abstract 252
|
|
|||||||||||||||||||||