CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 913-921.DOI: 10.11949/j.issn.0438-1157.20181029
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zhijia HUANG(),Liang LUO,Rui KE,Feifei ZHUO,Liang ZHONG
Received:
2018-09-13
Revised:
2018-12-12
Online:
2019-03-05
Published:
2019-03-05
Contact:
Zhijia HUANG
通讯作者:
黄志甲
作者简介:
黄志甲(1963—),男,博士,教授,<email>hzj@ahut.edu.cn</email>
基金资助:
CLC Number:
Zhijia HUANG, Liang LUO, Rui KE, Feifei ZHUO, Liang ZHONG. Dehumidification performance experiment of hydrophilic non-woven PVC composite structured packing[J]. CIESC Journal, 2019, 70(3): 913-921.
黄志甲, 罗良, 柯瑞, 卓飞飞, 钟亮. 亲水无纺布PVC复合规整填料除湿性能实验[J]. 化工学报, 2019, 70(3): 913-921.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181029
Fresh air temperature/℃ | Fresh air moisture content/ (g·kg-1) | Fresh air flow/ (kg·s-1) | Liquid temperature/ ℃ | Liquid concentration/% | Liquid flow/ (kg·s-1) |
---|---|---|---|---|---|
27.7—28.7 | 15.4—16.3 | 0.067—0.2 | 7—23 | 41.2—42.4 | 0.06—0.22 |
Table 1 Range of experimental parameter
Fresh air temperature/℃ | Fresh air moisture content/ (g·kg-1) | Fresh air flow/ (kg·s-1) | Liquid temperature/ ℃ | Liquid concentration/% | Liquid flow/ (kg·s-1) |
---|---|---|---|---|---|
27.7—28.7 | 15.4—16.3 | 0.067—0.2 | 7—23 | 41.2—42.4 | 0.06—0.22 |
Parameter | Equipment name | Model | Accuracy | Measuring range |
---|---|---|---|---|
air | ||||
flow | air volume cover | TSI-8380 | ± 3%, ± 10 m3·h-1 | 40—4000 m3·h-1 |
pressure drop | wind pressure meter | ZC1000-1F | ± 1 Pa | 0—±3000 Pa |
temperature and humidity | temperature and humidity loggers | TR-72wf | ± 0.3℃,± 5% RH | -10—60℃,10%—95% RH |
liquid | ||||
temperature | T-type thermocouple | TT-T-24-SLE | ± 0.1℃ | -200—260℃ |
flow | rotameter | LZT-25S25D | ± 4% | 250—2500 L·h-1 |
concentration | electronic balance | AUW120D | ± 0.01 mg | 0.01—42 g |
Parameter | Equipment name | Model | Accuracy | Measuring range |
---|---|---|---|---|
air | ||||
flow | air volume cover | TSI-8380 | ± 3%, ± 10 m3·h-1 | 40—4000 m3·h-1 |
pressure drop | wind pressure meter | ZC1000-1F | ± 1 Pa | 0—±3000 Pa |
temperature and humidity | temperature and humidity loggers | TR-72wf | ± 0.3℃,± 5% RH | -10—60℃,10%—95% RH |
liquid | ||||
temperature | T-type thermocouple | TT-T-24-SLE | ± 0.1℃ | -200—260℃ |
flow | rotameter | LZT-25S25D | ± 4% | 250—2500 L·h-1 |
concentration | electronic balance | AUW120D | ± 0.01 mg | 0.01—42 g |
Ref. | Packing type | Air mass flow/(kg·s-1) | Liquid mass flow/(kg·s-1) | Liquid temperature/℃ | Experimental result | |
---|---|---|---|---|---|---|
35%LiCl[ | plant fiber packing(CELdek) | range | 0.055—0.178 | 0.06—0.085 | 20.5—29.3 | |
α | ↑ | / | ↓ | 3.1—12.3 g·(m2·s)-1 | ||
34%LiCl[ | plastic corrugated-hole plate packing | range | 0.038—0.113 | 0.005—0.2 | 15 | |
α | ↑ | ↓ | / | 2—10 g·(m2·s)-1 | ||
33%LiCl[ | paper corrugated structured packing | range | 0.171—0.241 | 0.08—0.24 | 38.3—39.4 | |
k | ↑ | ↑ | / | 3.1—5.3W·(m2·℃)-1 | ||
30%LiCl[ | inorganic packing(GLASdek) | range | 0.2 | 0.082—0.198 | 15.3—20.6 | |
k | / | ↑ | ↓ | 2.8—4.3 W·(m2·℃)-1 | ||
43%LiBr[ | plant fiber packing(CELdek) | range | 0.378—0.521 | 0.475—0.994 | 22.2—26.7 | |
η | ↓ | ↑ | ↓ | 0.552—0.639 | ||
this paper (42%LiBr) | hydrophilic non-woven PVC composite structure packing | range | 0.067—0.2 | 0.06—0.22 | 7—23 | |
η | ↓ | ↑ | ↓ | 0.224—0.896 | ||
α | ↑ | ↑ | ↓ | 5.39—12.95 g·(m2·s)-1 | ||
k | ↑ | ↑ | ↓ | 5.6—10.3 W·(m2·℃)-1 |
Table 3 Comparison with dehumidification performance of packing in literatures
Ref. | Packing type | Air mass flow/(kg·s-1) | Liquid mass flow/(kg·s-1) | Liquid temperature/℃ | Experimental result | |
---|---|---|---|---|---|---|
35%LiCl[ | plant fiber packing(CELdek) | range | 0.055—0.178 | 0.06—0.085 | 20.5—29.3 | |
α | ↑ | / | ↓ | 3.1—12.3 g·(m2·s)-1 | ||
34%LiCl[ | plastic corrugated-hole plate packing | range | 0.038—0.113 | 0.005—0.2 | 15 | |
α | ↑ | ↓ | / | 2—10 g·(m2·s)-1 | ||
33%LiCl[ | paper corrugated structured packing | range | 0.171—0.241 | 0.08—0.24 | 38.3—39.4 | |
k | ↑ | ↑ | / | 3.1—5.3W·(m2·℃)-1 | ||
30%LiCl[ | inorganic packing(GLASdek) | range | 0.2 | 0.082—0.198 | 15.3—20.6 | |
k | / | ↑ | ↓ | 2.8—4.3 W·(m2·℃)-1 | ||
43%LiBr[ | plant fiber packing(CELdek) | range | 0.378—0.521 | 0.475—0.994 | 22.2—26.7 | |
η | ↓ | ↑ | ↓ | 0.552—0.639 | ||
this paper (42%LiBr) | hydrophilic non-woven PVC composite structure packing | range | 0.067—0.2 | 0.06—0.22 | 7—23 | |
η | ↓ | ↑ | ↓ | 0.224—0.896 | ||
α | ↑ | ↑ | ↓ | 5.39—12.95 g·(m2·s)-1 | ||
k | ↑ | ↑ | ↓ | 5.6—10.3 W·(m2·℃)-1 |
Type | Specific surface area/ (m2·m-3) | Porosity/ (m3·m-3) | Peak height/mm | Peak distance/mm |
---|---|---|---|---|
Type 1 | 358 | 0.89 | 6 | 36 |
Type 2 | 350 | 0.92 | 12 | 30 |
Type 3 | 396 | 0.94 | 7 | 25 |
Table 4 Structural parameters of three structured packings
Type | Specific surface area/ (m2·m-3) | Porosity/ (m3·m-3) | Peak height/mm | Peak distance/mm |
---|---|---|---|---|
Type 1 | 358 | 0.89 | 6 | 36 |
Type 2 | 350 | 0.92 | 12 | 30 |
Type 3 | 396 | 0.94 | 7 | 25 |
1 | OliveiraA C, AfonsoC F, RiffatS B, et al. Thermal performance of a novel air conditioning system using a liquid desiccant [J]. Applied Thermal Engineering, 2000, 20(13): 1213-1223. |
2 | LazzarinR M, CastellottiF. A new heat pump desiccant dehumidifier for supermarket application[J]. Energy & Buildings, 2007, 39(1): 59-65. |
3 | FuH X, LiuX H. Review of the impact of liquid desiccant dehumidification on indoor air quality[J]. Building & Environment, 2017, 116: 158-172. |
4 | ParkJ Y, YoonD S, LiS, et al. Empirical analysis of indoor air quality enhancement potential in a liquid-desiccant assisted air conditioning system[J]. Building & Environment, 2017, 121: 11-25. |
5 | 黄志甲, 鲁月红, 雷博, 等. 溴化锂溶液除湿器的实验研究[J]. 化工学报, 2010, 61(S2):81-85. |
HuangZ J, LuY H, LeiB, et al. Experiment on performance of LiBr-liquid desiccant dehumidification[J]. CIESC Journal, 2010, 61(S2): 81-85. | |
6 | DongC, LuL, WenT, et al. Experimental study on dehumidification performance enhancement by TiO2 superhydrophilic coating for liquid desiccant plate dehumidifiers[J]. Building & Environment, 2017, 124: 219-231. |
7 | 钱俊飞, 殷勇高, 潘雄伟, 等. 平板降膜溶液除湿再生过程实验研究及模型验证[J]. 化工学报, 2014, 65(6): 2070-2077. |
QianJ F, YinY G, PanX W, et al. Experimental investigation and model validation for liquid desiccant dehumidification and regeneration in falling-film plate[J]. CIESC Journal, 2014, 65(6): 2070-2077. | |
8 | 李群生, 马文涛, 张泽廷. 塔填料的研究现状及发展趋势[J]. 化工进展, 2005, 24(6):619-624. |
LiQ S , MaW T, ZhangZ T. Research and development trend of column packing[J]. Chemical Industry and Engineering Progress, 2005, 24(6): 619-624. | |
9 | 贾绍义, 吴松海, 李杰, 等. 聚丙烯填料表面处理对润湿及传质性能的影响[J]. 化工学报, 2000, 51(6):832-835. |
JiaS Y, WuS H, LiJ, et al. Influence of surface treatment of polypropylene packing on its wettability and mass transfer performance[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(6): 832-835. | |
10 | 贾绍义, 李锡源, 王恩祥. 金属填料表面处理对润湿及传质性能的影响[J]. 化工学报, 1995, 51(1): 112-116. |
JiaS Y, LiX Y, WangE X. Influence of surface treatment of metallic packing on its wettability and mass transfer performance[J]. Journal of Chemical Industry and Engineering(China), 1995, 51(1): 112-116. | |
11 | LiK, ShenK, HuangZ H, et al. Wettability of natural microcrystalline graphite filler with pitch in isotropic graphite preparation[J]. Fuel, 2016, 180: 743-748. |
12 | YangJ, HuangJ, YeZ, et al. Influence of interfacial reaction on reactive wettability of molten Ag-Cu-X wt.%Ti filler metal on SiC ceramic substrate and mechanism analysis[J]. Applied Surface Science, 2018, 436: 768-778. |
13 | ChenH Y, WangX C, FuL, et al. Effects of surface microstructure on the active element content and wetting behavior of brazing filler metal during brazing Ti3SiC2 ceramic and Cu[J]. Vacuum, 2018, 156: 256-263. |
14 | DongC, LuL, WenT, et al. Experimental study on dehumidification performance enhancement by TiO2 superhydrophilic coating for liquid desiccant plate dehumidifiers[J]. Building & Environment, 2017, 124: 219-231. |
15 | QiR, HuY, WangY, et al. A new approach to enhance the heat and mass transfer of liquid desiccant dehumidification with a titanium dioxide superhydrophilic self-cleaning coating[J]. Journal of Cleaner Production, 2016, 112: 3555-3561. |
16 | LiZ, HiharaE, MatsuokaF, et al. Experimental analysis of mass transfer in adiabatic structured packing dehumidifier/regenerator with liquid desiccant[J]. International Journal of Heat & Mass Transfer, 2010, 53(13): 2856-2863. |
17 | WangL, XiaoF, ZhangX, et al. An experimental study on the dehumidification performance of a counter flow liquid desiccant dehumidifier[J]. International Journal of Refrigeration, 2016, 70: 289-301. |
18 | 张欢, 李春茹, 李博佳. 金属填料型吸收式除湿器的除湿性能研究[J]. 暖通空调, 2009, 39(9): 46-50. |
ZhangH, LiC R, LiB J. Research of dehumidification performance of a metal filler absorbing-type dehumidifier[J]. Heating Ventilating & Air Conditioning, 2009, 39(9): 46-50. | |
19 | FuX, GeG, NiuX. Control performance of a dedicated outdoor air system adopting liquid desiccant dehumidification[J]. Applied Energy, 2011, 88(1): 143-149. |
20 | YinY, ZhangX. A new method for determining coupled heat and mass transfer coefficients between air and liquid desiccant[J]. International Journal of Heat & Mass Transfer, 2008, 51(13): 3287-3297. |
21 | ElsarragE, MagzoubE E M, JainS. Mass-transfer correlations for dehumidification of air by triethylene glycol in a structured packed column[J]. Industrial & Engineering Chemistry Research, 2004, 43(23): 7676-7681. |
22 | 王凌士, 肖赋, 陆韬. 高效填料型除湿器新传质关联式实验研究 [J]. 制冷学报, 2017, 38(6): 1-6. |
WangL S, XiaoF, LuT. New experimental correlations for the mass transfer of a high-efficiency packed-type dehumidifier[J]. Journal of Refrigeration, 2017, 38(6): 1-6. | |
23 | ChungT W. Predictions of moisture removal efficiencies for packed-bed dehumidification systems[J]. Gas Separation & Purification, 1994, 8(4): 265-268. |
24 | TsairW C, ChungL M. Vapor pressures of the aqueous desiccants[J]. Journal of Chemical & Engineering Data, 1999, 44(5): 1024-1027. |
25 | ZurigatY H, Abu-ArabiM K, Abdul-WahabS A. Dehumidification by triethylene glycol desiccant in a packed column[J]. Energy Conversion & Management, 2004, 45(1): 141-155. |
26 | YinY G, ZhangX S. A new method for determining coupled heat and mass transfer coefficients between air and liquid desiccant[J]. International Journal of Heat & Mass Transfer, 2008, 51(13): 3287-3297. |
27 | LiZ, HiharaE, MatsuokaF, et al. Experimental analysis of mass transfer in adiabatic structured packing dehumidifier/regenerator with liquid desiccant[J]. International Journal of Heat & Mass Transfer, 2010, 53(13): 2856-2863. |
28 | 戴智超, 殷勇高, 张小松. 波纹填料叉流除湿性能实验研究[J]. 建筑科学, 2014, 30(12): 102-105. |
DaiZ C, YinY G, ZhangX S. Experimental research on the performance of cross-flow dehumidification of corrugated packing[J]. Building Science, 2014, 30(12): 102-105. | |
29 | 陈瑶. 基于非常温溶液除湿的新型复合型空调系统研究[D]. 南京: 东南大学, 2016. |
ChenY. Analysis of a new hybrid air-condition system dehumidified by liquid desiccant with special temperature range[D]. Nanjing:Southeast University, 2016. | |
30 | LiuX H, ZhangY, QuK Y, et al. Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant[J]. Energy Conversion & Management, 2006, 47(15/16): 2682-2692. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[8] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[9] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[10] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[11] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[12] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[13] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[14] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[15] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||