CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 1099-1110.DOI: 10.11949/j.issn.0438-1157.20181054
• Energy and environmental engineering • Previous Articles Next Articles
Qian ZHANG1(),Xiangyang LIU1,Wang CHEN1,Heng WU1,Pengying XIAO1,Fangying JI2,Chen LI3,Haiming NIAN3
Received:
2018-09-19
Revised:
2018-11-07
Online:
2019-03-05
Published:
2019-03-05
Contact:
Qian ZHANG
张千1(),刘向阳1,陈旺1,吴恒1,肖芃颖1,吉芳英2,李宸3,念海明3
通讯作者:
张千
作者简介:
及第一作者:张千(1986—),男,博士研究生,讲师,<email>zhangqianswu2005@163.com</email>
基金资助:
CLC Number:
Qian ZHANG, Xiangyang LIU, Wang CHEN, Heng WU, Pengying XIAO, Fangying JI, Chen LI, Haiming NIAN. Preparation of a novel phosphorus removal filler and optimization of phosphate removal adsorption bed process[J]. CIESC Journal, 2019, 70(3): 1099-1110.
张千, 刘向阳, 陈旺, 吴恒, 肖芃颖, 吉芳英, 李宸, 念海明. 新型除磷填料的制备及除磷吸附床运行参数的优化[J]. 化工学报, 2019, 70(3): 1099-1110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181054
Factor | Level | |||
---|---|---|---|---|
HRT/min | Influent ρ( | Tempera-ture/℃ | Initial pH | |
HRT/min | 40—90 | 6 | 30 | 9 |
influent ρ( | 70 | 0.5—2.5 | 30 | 9 |
temperature/℃ | 70 | 6 | 17—40 | 9 |
initial pH | 70 | 6 | 30 | 6—11 |
Table 1 Operation parameters in each single factor experiment
Factor | Level | |||
---|---|---|---|---|
HRT/min | Influent ρ( | Tempera-ture/℃ | Initial pH | |
HRT/min | 40—90 | 6 | 30 | 9 |
influent ρ( | 70 | 0.5—2.5 | 30 | 9 |
temperature/℃ | 70 | 6 | 17—40 | 9 |
initial pH | 70 | 6 | 30 | 6—11 |
Code | Variable | Code level | ||||
---|---|---|---|---|---|---|
-α | -1 | 0 | 1 | +α | ||
X 1 | HRT/min | 50 | 60 | 70 | 80 | 90 |
X 2 | influent ρ( | 0.5 | 1 | 1.5 | 2 | 2.5 |
X 3 | temperature/℃ | 16 | 23 | 30 | 37 | 44 |
X 4 | initial pH | 7 | 8 | 9 | 10 | 11 |
Table 2 Variables and corresponding range of response surface methodology model
Code | Variable | Code level | ||||
---|---|---|---|---|---|---|
-α | -1 | 0 | 1 | +α | ||
X 1 | HRT/min | 50 | 60 | 70 | 80 | 90 |
X 2 | influent ρ( | 0.5 | 1 | 1.5 | 2 | 2.5 |
X 3 | temperature/℃ | 16 | 23 | 30 | 37 | 44 |
X 4 | initial pH | 7 | 8 | 9 | 10 | 11 |
Sample | ρ(waterborne polyurethane)/(g/L) | Volume of waterborne polyurethane/ ml | Dosage of hydrated calcium silicate/g | Phosphate removal rate/% |
---|---|---|---|---|
1 | 100 | 50 | 4 | 95.7 |
2 | 100 | 100 | 8 | 96.6 |
3 | 100 | 150 | 12 | 97.9 |
4 | 100 | 200 | 16 | 98.3 |
5 | 200 | 50 | 8 | 95.9 |
6 | 200 | 100 | 4 | 91.5 |
7 | 200 | 150 | 16 | 97.6 |
8 | 200 | 200 | 12 | 96.6 |
9 | 300 | 50 | 12 | 99.6 |
10 | 300 | 100 | 16 | 99.2 |
11 | 300 | 150 | 4 | 72.2 |
12 | 300 | 200 | 8 | 88.0 |
13 | 400 | 50 | 16 | 91.6 |
14 | 400 | 100 | 12 | 92.8 |
15 | 400 | 150 | 8 | 74.7 |
16 | 400 | 200 | 4 | 44.1 |
K 1 | 388.5 | 382.8 | 303.5 | |
K 2 | 381.6 | 380.1 | 355.2 | |
K 3 | 359.0 | 342.4 | 386.9 | |
K 4 | 303.2 | 327 | 386.7 | |
k 1 | 97.1 | 95.7 | 75.9 | |
k 2 | 95.4 | 95.0 | 88.8 | |
k 3 | 89.8 | 85.6 | 96.7 | |
k 4 | 75.8 | 81.8 | 96.7 | |
R | 21.3 | 13.9 | 20.8 | |
major-minor order of test factor | A>C>B | |||
optimal level | A1 | B1 | C3 | |
optimal combination | A1B1C3 |
Table 3 Orthogonal test results of phosphorus removal filter
Sample | ρ(waterborne polyurethane)/(g/L) | Volume of waterborne polyurethane/ ml | Dosage of hydrated calcium silicate/g | Phosphate removal rate/% |
---|---|---|---|---|
1 | 100 | 50 | 4 | 95.7 |
2 | 100 | 100 | 8 | 96.6 |
3 | 100 | 150 | 12 | 97.9 |
4 | 100 | 200 | 16 | 98.3 |
5 | 200 | 50 | 8 | 95.9 |
6 | 200 | 100 | 4 | 91.5 |
7 | 200 | 150 | 16 | 97.6 |
8 | 200 | 200 | 12 | 96.6 |
9 | 300 | 50 | 12 | 99.6 |
10 | 300 | 100 | 16 | 99.2 |
11 | 300 | 150 | 4 | 72.2 |
12 | 300 | 200 | 8 | 88.0 |
13 | 400 | 50 | 16 | 91.6 |
14 | 400 | 100 | 12 | 92.8 |
15 | 400 | 150 | 8 | 74.7 |
16 | 400 | 200 | 4 | 44.1 |
K 1 | 388.5 | 382.8 | 303.5 | |
K 2 | 381.6 | 380.1 | 355.2 | |
K 3 | 359.0 | 342.4 | 386.9 | |
K 4 | 303.2 | 327 | 386.7 | |
k 1 | 97.1 | 95.7 | 75.9 | |
k 2 | 95.4 | 95.0 | 88.8 | |
k 3 | 89.8 | 85.6 | 96.7 | |
k 4 | 75.8 | 81.8 | 96.7 | |
R | 21.3 | 13.9 | 20.8 | |
major-minor order of test factor | A>C>B | |||
optimal level | A1 | B1 | C3 | |
optimal combination | A1B1C3 |
Standard order | X 1 | X 2 | X 3 | X 4 | | |
---|---|---|---|---|---|---|
Measured value | Predicted value | |||||
22 | 70 | 1.5 | 44 | 9 | 91.00 | 90.37 |
17 | 50 | 1.5 | 30 | 9 | 78.12 | 78.79 |
8 | 80 | 2 | 37 | 8 | 88.84 | 89.47 |
5 | 60 | 1 | 37 | 8 | 86.58 | 85.90 |
9 | 60 | 1 | 23 | 10 | 85.87 | 85.23 |
2 | 80 | 1 | 23 | 8 | 86.82 | 86.90 |
18 | 90 | 1.5 | 30 | 9 | 92.48 | 91.31 |
16 | 80 | 2 | 37 | 10 | 92.59 | 92.73 |
3 | 60 | 2 | 23 | 8 | 73.58 | 72.73 |
12 | 80 | 2 | 23 | 10 | 88.94 | 89.61 |
24 | 70 | 1.5 | 30 | 11 | 91.12 | 90.85 |
19 | 70 | 0.5 | 30 | 9 | 86.02 | 85.54 |
28 | 70 | 1.5 | 30 | 9 | 91.02 | 91.01 |
25 | 70 | 1.5 | 30 | 9 | 91.01 | 91.01 |
13 | 60 | 1 | 37 | 10 | 88.99 | 89.76 |
14 | 80 | 1 | 37 | 10 | 88.59 | 88.67 |
7 | 60 | 2 | 37 | 8 | 78.54 | 79.26 |
30 | 70 | 1.5 | 30 | 9 | 90.95 | 91.01 |
23 | 70 | 1.5 | 30 | 7 | 83.96 | 83.73 |
10 | 80 | 1 | 23 | 10 | 86.99 | 87.54 |
1 | 60 | 1 | 23 | 8 | 80.99 | 81.37 |
4 | 80 | 2 | 23 | 8 | 86.59 | 86.34 |
6 | 80 | 1 | 37 | 8 | 87.09 | 88.03 |
27 | 70 | 1.5 | 30 | 9 | 91.03 | 91.01 |
29 | 70 | 1.5 | 30 | 9 | 91.02 | 91.01 |
21 | 70 | 1.5 | 16 | 9 | 82.59 | 82.71 |
26 | 70 | 1.5 | 30 | 9 | 91.00 | 91.01 |
20 | 70 | 2.5 | 30 | 9 | 80.99 | 80.97 |
15 | 60 | 2 | 37 | 10 | 86.59 | 85.75 |
11 | 60 | 2 | 23 | 10 | 78.89 | 79.22 |
Table 4 Factors and levels for central composite design
Standard order | X 1 | X 2 | X 3 | X 4 | | |
---|---|---|---|---|---|---|
Measured value | Predicted value | |||||
22 | 70 | 1.5 | 44 | 9 | 91.00 | 90.37 |
17 | 50 | 1.5 | 30 | 9 | 78.12 | 78.79 |
8 | 80 | 2 | 37 | 8 | 88.84 | 89.47 |
5 | 60 | 1 | 37 | 8 | 86.58 | 85.90 |
9 | 60 | 1 | 23 | 10 | 85.87 | 85.23 |
2 | 80 | 1 | 23 | 8 | 86.82 | 86.90 |
18 | 90 | 1.5 | 30 | 9 | 92.48 | 91.31 |
16 | 80 | 2 | 37 | 10 | 92.59 | 92.73 |
3 | 60 | 2 | 23 | 8 | 73.58 | 72.73 |
12 | 80 | 2 | 23 | 10 | 88.94 | 89.61 |
24 | 70 | 1.5 | 30 | 11 | 91.12 | 90.85 |
19 | 70 | 0.5 | 30 | 9 | 86.02 | 85.54 |
28 | 70 | 1.5 | 30 | 9 | 91.02 | 91.01 |
25 | 70 | 1.5 | 30 | 9 | 91.01 | 91.01 |
13 | 60 | 1 | 37 | 10 | 88.99 | 89.76 |
14 | 80 | 1 | 37 | 10 | 88.59 | 88.67 |
7 | 60 | 2 | 37 | 8 | 78.54 | 79.26 |
30 | 70 | 1.5 | 30 | 9 | 90.95 | 91.01 |
23 | 70 | 1.5 | 30 | 7 | 83.96 | 83.73 |
10 | 80 | 1 | 23 | 10 | 86.99 | 87.54 |
1 | 60 | 1 | 23 | 8 | 80.99 | 81.37 |
4 | 80 | 2 | 23 | 8 | 86.59 | 86.34 |
6 | 80 | 1 | 37 | 8 | 87.09 | 88.03 |
27 | 70 | 1.5 | 30 | 9 | 91.03 | 91.01 |
29 | 70 | 1.5 | 30 | 9 | 91.02 | 91.01 |
21 | 70 | 1.5 | 16 | 9 | 82.59 | 82.71 |
26 | 70 | 1.5 | 30 | 9 | 91.00 | 91.01 |
20 | 70 | 2.5 | 30 | 9 | 80.99 | 80.97 |
15 | 60 | 2 | 37 | 10 | 86.59 | 85.75 |
11 | 60 | 2 | 23 | 10 | 78.89 | 79.22 |
Source | Sum of squares | df | Mean square | F value | P value |
---|---|---|---|---|---|
Model | 691.57 | 13 | 53.20 | 101.47 | <0.0001 |
X 1 | 235.25 | 1 | 235.25 | 448.70 | <0.0001 |
X 2 | 31.33 | 1 | 31.33 | 59.75 | <0.0001 |
X 3 | 88.01 | 1 | 88.01 | 167.87 | <0.0001 |
X 4 | 76.11 | 1 | 76.11 | 145.17 | <0.0001 |
X 1 X 2 | 65.21 | 1 | 65.21 | 124.37 | <0.0001 |
X 1 X 3 | 11.56 | 1 | 11.56 | 22.05 | 0.0002 |
X 1 X 4 | 10.37 | 1 | 10.37 | 19.78 | 0.0004 |
X 2 X 3 | 3.98 | 1 | 3.98 | 7.59 | 0.0141 |
X 2 X 4 | 6.89 | 1 | 6.89 | 13.14 | 0.0023 |
X 1 2 | 60.86 | 1 | 60.86 | 116.08 | <0.0001 |
X 2 2 | 103.05 | 1 | 103.05 | 196.56 | <0.0001 |
X 3 2 | 34.15 | 1 | 34.15 | 65.14 | <0.0001 |
X 4 2 | 23.70 | 1 | 23.70 | 45.21 | <0.0001 |
residual | 8.39 | 16 | 0.52 | ||
lack of fit | 8.38 | 11 | 0.76 | 918.35 | <0.0001 |
pure error | 4.150×10-3 | 5 | 8.300×10-4 |
Table 5 Analysis of variance(ANOVA) for regression model
Source | Sum of squares | df | Mean square | F value | P value |
---|---|---|---|---|---|
Model | 691.57 | 13 | 53.20 | 101.47 | <0.0001 |
X 1 | 235.25 | 1 | 235.25 | 448.70 | <0.0001 |
X 2 | 31.33 | 1 | 31.33 | 59.75 | <0.0001 |
X 3 | 88.01 | 1 | 88.01 | 167.87 | <0.0001 |
X 4 | 76.11 | 1 | 76.11 | 145.17 | <0.0001 |
X 1 X 2 | 65.21 | 1 | 65.21 | 124.37 | <0.0001 |
X 1 X 3 | 11.56 | 1 | 11.56 | 22.05 | 0.0002 |
X 1 X 4 | 10.37 | 1 | 10.37 | 19.78 | 0.0004 |
X 2 X 3 | 3.98 | 1 | 3.98 | 7.59 | 0.0141 |
X 2 X 4 | 6.89 | 1 | 6.89 | 13.14 | 0.0023 |
X 1 2 | 60.86 | 1 | 60.86 | 116.08 | <0.0001 |
X 2 2 | 103.05 | 1 | 103.05 | 196.56 | <0.0001 |
X 3 2 | 34.15 | 1 | 34.15 | 65.14 | <0.0001 |
X 4 2 | 23.70 | 1 | 23.70 | 45.21 | <0.0001 |
residual | 8.39 | 16 | 0.52 | ||
lack of fit | 8.38 | 11 | 0.76 | 918.35 | <0.0001 |
pure error | 4.150×10-3 | 5 | 8.300×10-4 |
Fig.6 Contour and response surface plots for interaction effects of HRT, influent P O 4 3 - -P concentration, temperature and initial pH on phosphate removal efficiency
Solution No. | HRT/min | Influent ρ( | Temperature/℃ | Initial pH | Phosphate removal efficiency/% | Desirability |
---|---|---|---|---|---|---|
1 | 79.77 | 1.70 | 34.04 | 9.68 | 93.46 | 1.000 |
2 | 79.75 | 1.70 | 33.98 | 9.68 | 93.4579 | 1.000 |
3 | 79.90 | 1.70 | 34.01 | 9.67 | 93.4578 | 1.000 |
4 | 79.97 | 1.71 | 34.01 | 9.67 | 93.4576 | 1.000 |
5 | 79.48 | 1.70 | 34.15 | 9.69 | 93.4573 | 1.000 |
6 | 76.75 | 1.70 | 33.87 | 9.69 | 93.4572 | 1.000 |
7 | 80.00 | 1.69 | 32.80 | 9.59 | 93.4221 | 0.998 |
8 | 80.00 | 1.70 | 33.80 | 9.27 | 93.3107 | 0.992 |
Table 6 Optimization results for phosphate maximum removal efficiency
Solution No. | HRT/min | Influent ρ( | Temperature/℃ | Initial pH | Phosphate removal efficiency/% | Desirability |
---|---|---|---|---|---|---|
1 | 79.77 | 1.70 | 34.04 | 9.68 | 93.46 | 1.000 |
2 | 79.75 | 1.70 | 33.98 | 9.68 | 93.4579 | 1.000 |
3 | 79.90 | 1.70 | 34.01 | 9.67 | 93.4578 | 1.000 |
4 | 79.97 | 1.71 | 34.01 | 9.67 | 93.4576 | 1.000 |
5 | 79.48 | 1.70 | 34.15 | 9.69 | 93.4573 | 1.000 |
6 | 76.75 | 1.70 | 33.87 | 9.69 | 93.4572 | 1.000 |
7 | 80.00 | 1.69 | 32.80 | 9.59 | 93.4221 | 0.998 |
8 | 80.00 | 1.70 | 33.80 | 9.27 | 93.3107 | 0.992 |
1 | Song X Y , Pan Y Q , Wu Q , et al . Phosphate removal from aqueous solutions by adsorption using ferric sludge[J]. Desalination, 2011, 280(1): 384-390. |
2 | Yan L G , Xu Y Y , Yu H Q , et al . Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites[J]. Journal of Hazardous Materials, 2010, 179(1): 244-250. |
3 | 郭照冰, 陈天, 陈天蕾, 等 . 铁盐改性废弃蛋壳对水中磷的吸附特征研究[J]. 中国环境科学, 2011, 31(4): 611-615. |
Guo Z B , Chen T , Chen T L , et al . Phosphorus adsorption behaviors on iron-coated wasted eggshell in aqueous solution [J]. China Environmental Science, 2011, 31(4): 611-615. | |
4 | 柳飞, 张延一, 严玉鹏, 等 . 不同结构有机磷在(氢)氧化铝表面的吸附与解吸特征[J]. 环境科学, 2013, 34(11): 4482-4489. |
Liu F , Zhang Y Y , Yan Y P , et al . Sorption and desorption characteristics of different structures of organic phosphorus onto aluminum ( oxyhydr) oxides [J]. Environmental Science, 2013, 34(11): 4482-4489. | |
5 | Suzuki K , Tanaka Y , Kuroda K , et al . Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device[J]. Bioresource Technology, 2007, 98(8): 1573-1578. |
6 | Zhang X , Lin H , Hu B . The effects of electrocoagulation on phosphorus removal and particle settling capability in swine manure[J]. Separation and Purification Technology, 2018, 200: 112-119. |
7 | Oehmen A , Lemos P C , Carvalho G , et al . Advances in enhanced biological phosphorus removal: from micro to macro scale[J]. Water Research, 2007, 41(11): 2271-2300. |
8 | Jiang L , Wang M , Wang Y , et al . The condition optimization and mechanism of aerobic phosphorus removal by marine bacterium Shewanella sp[J]. Chemical Engineering Journal, 2018, 345: 611-620. |
9 | Arias C A , Brix H . Phosphorus removal in constructed wetlands: can suitable alternative media be identified?[J]. Water Science and Technology, 2005, 51(9): 267-273. |
10 | 蔡冬蓉, 徐炎华 . 浮萍对富营养化水体中磷的去除规律[J]. 农业工程学报, 2011, 27(S2): 187-190. |
Cai D R , Xu Y H . Phosphorus removal rules of duckweed plants in eutrophication water [J]. Transactions of the CSAE, 2011, 27(S2): 187-190. | |
11 | 张岩, 崔丽娟, 李伟, 等 . 基于水流模型的串联式水平潜流湿地除磷效果分析[J]. 农业工程学报, 2014, 30(19): 174-181. |
Zhang Y , Cui L J , Li W , et al . Analysis on phosphorus removal in series horizontal subsurface flow constructed wetland based on hydraulic model [J]. Transactions of the CSAE, 2014, 30(19): 174-181. | |
12 | 唐朝春, 刘名, 陈惠民, 等 . 吸附除磷技术的研究进展[J]. 水处理技术, 2014, 40(9): 1-7+12. |
Tang C C , Liu M , Chen H M , et al . Research progress of phosphorus removal from wastewater by adsorption technology [J]. Technology of Water Treatment, 2014, 40(9): 1-7+12. | |
13 | Du X , Han Q , Li J , et al . The behavior of phosphate adsorption and its reactions on the surfaces of Fe–Mn oxide adsorbent[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76: 167-175. |
14 | Mahardika D , Park H S , Choo K H . Ferrihydrite-impregnated granular activated carbon (FH@GAC) for efficient phosphorus removal from wastewater secondary effluent[J]. Chemosphere, 2018, 207: 527. |
15 | 关伟, 吉芳英, 陈晴空, 等 . 水化硅酸钙的制备及磷回收性能表征[J]. 功能材料, 2012, 43(23): 3286-3290. |
Guan W , Ji F Y , Chen Q K , et al . Preparation and phosphorus recovery performance of calcium silicate hydrate [J]. Functional Materials, 2012, 43(23): 3286-3290. | |
16 | 孙华, 郑红, 马鸿, 等 . 沉淀硅酸钙晶种法回收实际污水中磷[J]. 化工矿物与加工, 2014, 43(10): 23-26+47. |
Sun H , Zheng H , Ma H , et al . Recovery of phosphorus in wastewater by crystal seed method of calcium silicate [J]. Industrial Minerals and Processing, 2014, 43(10): 23-26+47. | |
17 | 王鑫永, 陈雪初, 何圣兵, 等 . 水化硅酸钙回收污水中磷的试验研究[J]. 工业用水与废水, 2011, 42(4): 51-54. |
Wang X Y , Chen X C , He S B , et al . Recovery of phosphorus from wastewater by calcium silicate hydrate [J]. Industrial Water and Wastewater, 2011, 42(4): 51-54. | |
18 | 刘焱, 张怡, 王世和, 等 . 复合除磷材料在污水处理厂二沉池出水除磷中的应用[J]. 给水排水, 2009, 45(4): 40-43. |
Liu Y , Zhang Y , Wang S H , et al . Application of phosphorus removal composite material in the dephosphorization process of WWTP secondary sedimentation tank effluent [J]. Water and Wastewater Engineering, 2009, 35(4): 40-43. | |
19 | 张美兰, 何圣兵, 陈雪初, 等 . 天然沸石和硅酸钙滤床的脱氨除磷效能[J]. 水处理技术, 2007, 33(11): 71-74. |
Zhang M L , He S B , Chen X C , et al . Removal of ammonia and phosphate by filtration bed packed with natural zeolite and calcium silicate [J]. Technology of Water Treatment, 2007, 33(11): 71-74. | |
20 | 郑俊, 马露露, 刘宝河 . 多孔硅酸钙滤料吸附床除磷试验研究[J]. 环境污染与防治, 2013, 35(8): 28-32. |
Zheng J , Ma L L , Liu B H . Study on the removal of phosphorus by porous calcium silicate adsorption bed [J]. Environmental Pollution and Control, 2013, 35(8): 28-32. | |
21 | 李品君 . 微孔硅酸钙的制备及其污水除磷性能研究[D]. 合肥: 安徽工业大学, 2012. |
Li P J . Preparation of microporous calcium silicate and its studies on removal of phosphor in waste water [D]. Hefei: Anhui University of Technology, 2012. | |
22 | 马露露 . 多孔硅酸钙滤料应用于市政污水深度除磷的实验研究[D]. 合肥: 安徽工业大学, 2013. |
Ma L L . Research on advanced dephosphorization from municipal sewage by porous calcium silicate [D]. Hefei: Anhui University of Technology, 2013. | |
23 | 张连科, 杨冬梅, 韩剑宏, 等 . 硅酸钙处理富营养化湖水中总磷的实验研究[J]. 无机盐工业, 2013, 45(11): 41-43. |
Zhang L K , Yang D M , Han J H , et al . Study on removal of total phosphorus from eutrophic lake water by calcium silicate [J]. Inorganic Chemistry Industry, 2013, 45(11): 41-43. | |
24 | 程朝阳, 赵诗惠, 吕亮, 等 . 基于ABR-MBR组合工艺优化反硝化除磷性能的研究[J]. 环境科学, 2016, 37(11): 4282-4288. |
Cheng C Y , Zhao S H , Lyu L , et al . Optimization of denitrifying phosphorus removal performance based on ABR-MBR combination process[J]. Environmental Science, 2016, 37(11): 4282-4288. | |
25 | 韩芸, 许松, 董涛, 等 . 碳源类型、温度及电子受体对生物除磷的影响[J]. 环境科学, 2015, 36(2): 590-596. |
Han Y , Xu S , Dong T , et al . Effect of carbon source type, temperature and electron acceptor on biological phosphorus removal[J]. Environmental Science, 2015, 36(2): 590-596. | |
26 | Li W , Zhang H Y , Sun H Z , et al . Influence of pH on short-cut denitrifying phosphorus removal[J]. Water Science and Engineering, 2018, (1): 17-22. |
27 | 吕景花, 袁林江, 张婷婷 . 响应面法优化厌氧上清液除磷的研究[J]. 中国环境科学, 2014, 34(1): 72-77. |
Lyu J H , Yuan L J , Zhang T T . Optimization of phosphorus removal by anaerobic supernatant by response surface methodology [J]. China Environmental Science, 2014, 34(1): 72-77. | |
28 | Bashar R , Gungor K , Karthikeyan K G , et al . Cost effectiveness of phosphorus removal processes in municipal wastewater treatment[J]. Chemosphere, 2018, 197: 280. |
29 | 赵桂瑜, 周琪, 秦琴 . 干渣吸附处理含磷污水的研究[J]. 农业环境科学学报, 2007, 26(3): 925-928. |
Zhao G Y , Zhou Q , Qin Q . Phosphorus removal from wastewater by adsorption on blast furnace slag [J]. Journal of Agro-Environment Science, 2007, 26(3): 925-928. | |
30 | 石磊 . 水化硅酸钙的除磷及磷回收特性研究[D]. 重庆: 重庆大学, 2012. |
Shi L . Study on the characteristics of removing and reusing phosphorus by calcium silicate hydrate [D]. Chongqing: Chongqing University, 2012. |
[1] | Yaoming CHEN,Feng XU,Xionglin LUO. A coordinated optimal margin design method for chemical process based on relative gain and priority [J]. CIESC Journal, 2022, 73(3): 1280-1290. |
[2] | Zheng WANG, Feng XU, Xionglin LUO. Full-cycle optimization of acetylene conversion distribution for acetylene hydrogenation beds-in-series reactor [J]. CIESC Journal, 2022, 73(10): 4551-4564. |
[3] | SHI Ce, YU Ji, GAO Dong, WANG Haibin, YAO Shanjing, LIN Dongqiang. Process simulation and economic evaluation of monoclonal antibody production [J]. CIESC Journal, 2018, 69(7): 3198-3207. |
[4] | CHEN Zewei, WANG Yixiang, DING Xufen, XU Yinghua, MA Chun'an. Electrochemical reduction of dechlorination of pentachloropyridine to 2,3,5,6-tetrachloropyridine over zinc-based catalyst: reaction mechanism and process optimization [J]. CIESC Journal, 2016, 67(6): 2332-2339. |
[5] | LI Yunzhao, SONG Xingfu, SUN Yuzhu, SUN Ze, YU Jianguo. Optimization of reactive extraction-crystallization process based on response surface methodology [J]. CIESC Journal, 2016, 67(2): 588-597. |
[6] | ZHANG Xueli, WANG Kejian, JIANG Honggang, SU Zhengtao, YUAN Huilin. Process optimization of preparing melamine formaldehyde foam [J]. CIESC Journal, 2015, 66(S1): 343-348. |
[7] | GONG Sheng, CHENG Xing'an, ZHOU Xinhua, YIN Guoqiang, CHENG Jiang, WANG Haobo. Process optimization and kinetic study of supercritical CO2 drying in preparation of nanosized antimony doped tin oxide [J]. CIESC Journal, 2015, 66(4): 1593-1599. |
[8] | LIU Xiaohua, ZHANG Tao, ZHENG Yuwei. Performance analysis on air handling processes using desiccants [J]. CIESC Journal, 2014, 65(z2): 129-139. |
[9] | XIE Zhiping, SUN Dengqiong, QIN Yanan, REN Riju, GONG Junbo. Optimization of crystallization process of fructose [J]. CIESC Journal, 2014, 65(1): 251-257. |
[10] | LU Dingqiang1,2,SHEN Dong2,LING Xiuquan1. Synthesis research progress in COX-2 inhibitors Celecoxib [J]. Chemical Industry and Engineering Progree, 2014, 33(06): 1521-1525. |
[11] | WANG Longyao, WANG Lan. Estimation and control of process time for membrane separation of cephalosporin C from fermentation broth [J]. CIESC Journal, 2013, 64(9): 3256-3261. |
[12] | LIU Yongwei1,CHEN Juanjuan2,WANG Bo1,LI Xingang2,XIAO Shuangquan1,HUANG Guoqiang2,WEI Na2,SUI Hong2. Simulation and optimization of shale oil condensation recovery process [J]. , 2011, 30(3): 498-. |
[13] | Andreas Harwardt, Korbinian Kraemer, Bettina Rüngeler, Wolfgang Marquardt. Conceptual Design of a Butyl-levulinate Reactive Distillation Process by Incremental Refinement [J]. , 2011, 19(3): 371-379. |
[14] | LI Wei1,2,CHEN Yufang1. Optimization of cationic reaction of cellulose in heterogenous systems with boron compound [J]. , 2011, 30(11): 2523-. |
[15] | FAN Juan, ZHAN Huaiyu. Optimization of Synthesis of Spherical Lignosulphonate Resin and Its Structure Characterization [J]. , 2008, 16(3): 407-410. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||