CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 1111-1119.DOI: 10.11949/j.issn.0438-1157.20180947
• Energy and environmental engineering • Previous Articles Next Articles
Received:
2018-08-20
Revised:
2018-11-20
Online:
2019-03-05
Published:
2019-03-05
Contact:
Xianchun LI
通讯作者:
李先春
作者简介:
<named-content content-type="corresp-name">李艳鹰</named-content>(1994—),女,硕士研究生,<email>liyanying1994@163.com</email>|李先春(1972—),男,教授,<email>askd1972@163.com</email>
基金资助:
CLC Number:
Yanying LI, Xianchun LI. Biomass activated carbon loaded with zero-valent iron nanocrystal clusters for direct catalytic reduction of NO[J]. CIESC Journal, 2019, 70(3): 1111-1119.
李艳鹰, 李先春. 生物质活性炭负载零价铁纳米晶簇直接催化还原NO[J]. 化工学报, 2019, 70(3): 1111-1119.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180947
温度 | 空速 | NO浓度 |
---|---|---|
280℃ | 6000 h-1 | 300×10-6 |
Table 1 Parameters of experimental conditions for denitrification
温度 | 空速 | NO浓度 |
---|---|---|
280℃ | 6000 h-1 | 300×10-6 |
Fig.12 Denitrification efficiency when CO is added in denitrification experiment(Fe=5%(mass),S=6000 h-1,cNO=300×10-6)a—T=280℃,cCO=0; b—T=280℃,cCO=100×10-6; c—T=350℃,cCO=0; d—T=350℃,cCO=100×10-6
1 | LiuG, GaoP X. A review of NOx storage/reduction catalysts: mechanism, materials and degradation studies[J]. Catalysis Science & Technology, 2011, 1(4): 552-568. |
2 | BoningariT, PanagiotisG S. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: catalytic evaluation and characterizations [J]. Journal of Catalysis, 2012, 288: 74-83. |
3 | ShiL N, ZhangX, ChenZ L. Removal of chromium (Ⅵ) from wastewater using bentonite-supported nanoscale zero-valent iron[J]. Water Research, 2011, 45(2): 886-892. |
4 | ZhangX, LinS, ChenZ, et al. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism[J]. Water Research, 2011, 45(11): 3481-3488. |
5 | KimS A , Kamala-KannanS , LeeK J , et al. Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite[J]. Chemical Engineering Journal, 2013, 217: 54-60. |
6 | LingL, PanB, ZhangW X. Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV)[J]. Water Research, 2015, 71: 274-281. |
7 | ChenH, CaoY, WeiE, et al. Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water[J]. Chemosphere, 2016, 146: 32-39. |
8 | HayhurstA N, NinomiyaY. Kinetics of the conversion of NO to N2, during the oxidation of iron particles by NO in a hot fluidised bed[J]. Chemical Engineering Science, 1998, 53(8): 1481-1489. |
9 | HayhurstA N, LawrenceA D. The reduction of the nitrogen oxides NO and N2O to molecular nitrogen in the presence of iron, its oxides, and carbon monoxide in a hot fluidized bed[J]. Combustion & Flame, 1997, 110(3): 351-365. |
10 | GradońB, LasekJ. Investigations of the reduction of NO to N2 by reaction with Fe[J]. Fuel, 2010, 89(11): 3505-3509. |
11 | 苏亚欣, 苏阿龙, 成豪.金属铁直接催化还原NO的实验研究[J].煤炭学报, 2013, 38(1): 206-210. |
SuY X, SuA L, ChengH. Experimental study on direct catalytic reduction of NO by metallic iron[J].Journal of China Coal Society, 2013, 38(1): 206-210. | |
12 | MiuraK, NakagawaH, KitauraR, et al. Low-temperature conversion of NO to N2 by use of a novel Ni loaded porous carbon[J]. Chemical Engineering Science, 2001, 56(4): 1623-1629. |
13 | SunY P, LiX, CaoJ, et al. Characterization of zero-valent iron nanoparticles[J]. Adv. Colloid Interface Sci., 2006, 120(1): 47-56. |
14 | XiaoJ, XuQ, XuQ, et al. Direct promotion effect of Fe on no reduction by activated carbon loaded with Fe species[J]. Journal of Chemical Thermodynamics, 2016, 95: 216-230. |
15 | Illán-GómezM J, Linares-SolanoA, Salinas-MartinezD L C, et al. Nitrogen oxide (NO) reduction by activated carbons (1): The role of carbon porosity and surface area[J]. Energy & Fuels, 1993, 7(1): 146-154. |
16 | Illán-GómezM J, Linares-SolanoA, RadovicL R. NO reduction by activated carbons(5): Catalytic effect of iron[J]. Energy & Fuels, 1995, 9(3): 97-103. |
17 | Illán-GómezM J, Linares-SolanoA, RadovicL R, et al. NO reduction by activated carbons(3): Influence of catalyst loading on the catalytic effect of potassium[J]. Energy & Fuels, 1995, 9(1): 104-111. |
18 | Illán-GómezM J, Linares-SolanoA, RadovicL R, et al. NO reduction by activated carbons(4): Catalysis by calcium[J]. Energy & Fuels, 1995, 9(1): 112-118. |
19 | Illán-GómezM J, Linares-SolanoA, RadovicL R. NO reduction by activated carbons(2): Catalytic effect of potassium[J]. Fuel & Energy Abstracts, 1995, 36(1): 97-103. |
20 | Illán-GómezM J, Linares-SolanoA, LeceaS M D. NO reduction by activated carbon(6): Catalysis by transition metals[J]. Energy Fuels, 1995, 9(6): 976-983. |
21 | Illán-GómezM J, Linares-SolanoA, RadovicL R, et al. NO reduction by activated carbons(7): Some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Energy & Fuels, 1996, 10: 158-168. |
22 | TengH, SuubergE M. Chemisorption of nitric oxide on char(1): Reversible nitric oxide sorption[J]. Cheminform, 1993, 24(16): 478-483. |
23 | TengH, SuubergE M. Chemisorption of nitric oxide on char(2): Irreversible carbon oxide formation[J]. Industrial & Engineering Chemistry Research, 1993, 32(3): 416-423. |
24 | LiX, DongZ, DouJ, et al. Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment[J]. Fuel Processing Technology, 2016, 148: 91-98. |
25 | de FariaD L A, VenâncioS, de OliveiraM T. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. Journal of Raman Spectroscopy, 1997, 28(11): 873-878. |
26 | 胡涛, 路欣, 阎研, 等. 用纯铁氧化法生长的铁氧化物样品的Raman光谱研究[J].光谱学与光谱分析, 2004, 24(9): 1072-1074. |
HuT, LuX, YanY, et al. Raman spectroscopic study on the iron oxide film prepared by iron oxidation method[J]. Spectroscopy and Spectral Analysis, 2004, 24(9): 1072-1074. | |
27 | GrosvenorA P, KobeB A, BiesingerM C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds[J]. Surface and Interface Analysis, 2004, 36(12): 1564-1574. |
28 | 胡慧萍, 王梦, 丁治英, 等. FT-IR、XPS和DFT研究水杨酸钠在针铁矿或赤铁矿上的吸附机理[J].物理化学学报, 2016, 32(8): 2059-2068. |
HuH P, WangM, DingZ Y, et al. FT-IR, XPS and DFT study of the adsorption mechanism of sodium salicylate onto goethite or hematite[J]. Acta Phys.–Chim. Sin., 2016, 32(8): 2059-2068. | |
29 | ZhangS, ZhangH, ZhangW, et al. Induced growth of Fe-Nx active sites using carbon templates[J]. Chinese Journal of Catalysis, 2018, (8): 1427-1435. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[9] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[13] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||