CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1272-1281.DOI: 10.11949/j.issn.0438-1157.20181235
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Qianqing LIANG1,2(),Xuehu MA1(),Kai WANG1,Jiang CHUN1,Tingting HAO1,Zhong LAN1,Yaxiong WANG2
Received:
2018-10-19
Revised:
2019-01-07
Online:
2019-04-05
Published:
2019-04-05
Contact:
Xuehu MA
梁倩卿1,2(),马学虎1(),王凯1,春江1,郝婷婷1,兰忠1,王亚雄2
通讯作者:
马学虎
作者简介:
<named-content content-type="corresp-name">梁倩卿</named-content>(1985—),女,博士,讲师,<email>liangqianqing119@hotmail.com</email>|马学虎(1965—),男,博士,教授,<email>xuehuma@dlut.edu.cn</email>
基金资助:
CLC Number:
Qianqing LIANG, Xuehu MA, Kai WANG, Jiang CHUN, Tingting HAO, Zhong LAN, Yaxiong WANG. Gas-liquid Taylor flow pressure drop in rectangular meandering microchannel[J]. CIESC Journal, 2019, 70(4): 1272-1281.
梁倩卿, 马学虎, 王凯, 春江, 郝婷婷, 兰忠, 王亚雄. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181235
Liquid phase | Density, ρ/(kg·m-3) | Viscosity, μ/(mPa· s) | Surface tension, σ/(mN·m-1) |
---|---|---|---|
deionized water | 997 | 0.890 | 72.2 |
2% (mole fraction) propanol aqueous solution (2% NPA) | 987.2 | 1.154 | 41.8 |
5% (mole fraction) propanol aqueous solution (5% NPA) | 975.6 | 1.574 | 30.5 |
methanol(MT) | 786 | 0.546 | 22.2 |
ethanol(EA) | 785 | 1.099 | 22.7 |
propanol(NPA) | 800 | 1.942 | 23.4 |
Table 1 Physicochemical properties of liquid phase[36]
Liquid phase | Density, ρ/(kg·m-3) | Viscosity, μ/(mPa· s) | Surface tension, σ/(mN·m-1) |
---|---|---|---|
deionized water | 997 | 0.890 | 72.2 |
2% (mole fraction) propanol aqueous solution (2% NPA) | 987.2 | 1.154 | 41.8 |
5% (mole fraction) propanol aqueous solution (5% NPA) | 975.6 | 1.574 | 30.5 |
methanol(MT) | 786 | 0.546 | 22.2 |
ethanol(EA) | 785 | 1.099 | 22.7 |
propanol(NPA) | 800 | 1.942 | 23.4 |
1 | Ganapathy H , Al-hajri E , Ohadi M . Mass transfer characteristics of gas-liquid absorption during Taylor flow in mini/microchannel reactors[J]. Chem. Eng. Sci., 2013, 101: 69-80. |
2 | Dutcher B , Fan M , Russell A G . Amine - based CO2 capture technology development from the beginning of 2013—a review [J]. ACS Appl. Mater. Interfaces, 2015, 7(4): 2137-2148. |
3 | 马学虎, 兰忠, 王凯, 等 . 舞动的液滴:界面现象与过程调控[J]. 化工学报, 2018, 69(1): 9-43. |
Ma X H , Lan Z , Wang K , et al . Dancing droplet: interface phenomena and progress regulation[J]. CIESC Journal, 2018, 69(1): 9-43. | |
4 | 陈光文, 袁权 . 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
Chen G W , Yuan Q . Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
5 | 袁权, 陈光文, 赵玉潮 . 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1): 63-75. |
Yuan Q , Chen G W , Zhao Y C . Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1): 63-75. | |
6 | 尧超群, 乐军, 赵玉潮,等 . 微通道内气-液状流动及传质特性研究进展[J]. 化工学报, 2015, 66 (8): 2759-2766. |
Yao C Q , Yue J , Zhao Y C , et al . Review on flow and mass transfer characteristics of gas-liquid slug flow in microchannels[J].CIESC Journal, 2015,66(8): 2759-2766 | |
7 | Guzowski J , Garstecki P . Droplet clusters: exploring the phase space of soft mesoscale atoms[J]. Phys. Rev. Lett.,2015, 114(18): 188302. |
8 | Costantini M , Colosi C , Jaroszewicz J , et al . Microfluidic foaming: a powerful tool for tailoring the morphological and permeability properties of sponge-like biopolymeric scaffolds[J]. ACS Appl. Mat. Interfaces, 2015, 7(42): 23660-23671. |
9 | Li W , Liu K , Simms R , et al . Microfluidic study of fast gas-liquid reactions[J]. J. Am. Chem. Soc., 2012, 134(6): 3127-3132. |
10 | Hao T T , Ma X H , Lan Z , et al . Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe[J]. Int. J. Heat Mass Transfer, 2014, 72: 50-65. |
11 | Hao T T , Ma X H , Lan Z , et al . Effects of superhydrophobic and superhydrophilic surfaces on heat transfer and oscillating motion of an oscillating heat pipe[J]. J. Heat Transfer, 2014, 136(8):082001. |
12 | Liang Q Q , Hao T T , Wang K , et al . Startup and transport characteristics of oscillating heat pipe using ionic liquids[J]. Int. Commun. Heat Mass, 2018, 94: 1-13. |
13 | Tumarkin E , Nie Z , Park J I , et al . Temperature- controlled “breathing” of carbon dioxide bubbles[J]. Lab Chip, 2011, 11(20): 3545-3450. |
14 | Lefortier S G , Hamersma P J , Bardow A , et al . Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents[J]. Lab Chip, 2012, 12(18): 3387-3391. |
15 | 梁倩卿, 春江, 王凯, 等 . 弯曲型微通道吸收CO2/N2 混合气的传质性能[J]. 高校化学工程学报, 2017, 31(4): 784-793. |
Liang Q Q , Chun J , Wang K , et al . Mass transfer characteristics during CO2 /N2 mixture absorption in a meandering-microchannel[J]. J. Chem. Eng. Chin. Univ., 2017, 31(4): 784-793. | |
16 | 马学虎, 梁倩卿, 王凯, 等 . 基于微吸收器的CO2吸收过程研究进展[J]. 化工进展, 2018, 37(4): 1229-1246. |
Ma X H , Liang Q Q , Wang K , et al . Progress of CO2 absorption process in micro-absorbers[J].Chem. Ind. Eng. Prog., 2018, 37(4): 1229-1246. | |
17 | Yao C Q , Zhao Y C , Dang M H , et al . Characteristics of slug flow with inertial effects in a rectangular microchannel[J]. Chem. Eng. Sci., 2013, 95: 246-256. |
18 | van Steijn V , Kreutzer M T , Kleijn C R . μ-PIV study of the formation of segmented flow in microfluidic T-junctions[J]. Chem. Eng. Sci., 2007, 62(24): 7505-7514. |
19 | Kuhn S , Jensen K F . A pH-sensitive laser-induced fluorescence technique to monitor mass transfer in multiphase flows in microfluidic devices[J]. Ind. Eng. Chem. Res., 2012, 51(26): 8999-9006. |
20 | Tan J , Lu Y C , Xu J H , et al . Mass transfer performance of gas-liquid segmented flow in microchannels[J]. Chem. Eng. J., 2012, 181/182: 229-235. |
21 | Zaloha P , Kristal J , Jiricny V , et al . Characteristics of liquid slugs in gas- liquid Taylor flow in microchannels[J]. Chem. Eng. Sci., 2012, 68(1): 640-649. |
22 | Fries D M , von Rohr P R . Liquid mixing in gas-liquid two-phase flow by meandering microchannels[J].Chem. Eng. Sci., 2009, 64(6): 1326-1335. |
23 | Fries D , Waelchli S , Rudolfvonrohr P . Gas-liquid two-phase flow in meandering microchannels[J]. Chem. Eng. J., 2008, 135: S37-S45 |
24 | Günther A , Khan S A , Thalmann M , et al . Transport and reaction in microscale segmented gas-liquid flow[J]. Lab Chip, 2004, 4(4): 278-286. |
25 | Günther A , Jhunjhunwala M , Thalmann M . Micromixing of miscible liquids in segmented gas-liquid flow[J]. Langmuir, 2005, 21: 1547-1555. |
26 | Mac Giolla Eain M , Egan V , Howard J , et al . Review and extension of pressure drop models applied to Taylor flow regimes[J]. Int. J. Multiphase Flow, 2015, 68: 1-9. |
27 | Triplett K A , Ghiaasiaan S M , Abdel-Khalik S I , et al . Gas-liquid two-phase flow in microchannels (Ⅱ): Void fraction and pressure drop [J]. Int. J. Multiphase Flow, 1999, 25(3): 395-410. |
28 | Lockhart R W , Martinelli R C . Proposed correlation of data for isothermal two- phase, two- component flow in pipes [J]. Chem. Eng. Prog., 1949, 45(1): 39-48. |
29 | Ratulowski J , Chang H C . Transport of gas bubbles in capillaries[J]. Phys. Fluid A: Fluid Dynamics, 1989, 1(10): 1642-1655. |
30 | Bretherton F P . The motion of long bubbles in tubes[J]. J. Fluid Mech., 1961, 10: 166-188. |
31 | Kreutzer M T , Kapteijn F , Moulijn J A . Inertial and interfacial effects on pressure drop of Taylor flow in capillaries[J]. AIChE J., 2005, 51(9): 2428-2440. |
32 | Walsh E , Muzychka Y , Walsh P , et al . Pressure drop in two phase slug/bubble flows in mini scale capillaries[J]. Int. J. Multiphase Flow, 2009, 35(10): 879-884. |
33 | Warnier M J F , de Croon M H J M , Rebrov E V , et al . Pressure drop of gas-liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers[J]. Microfluid Nanofluid, 2009, 8(1): 33-45. |
34 | Yue J , Luo L G , Gonthier Y , et al . An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chem. Eng. Sci., 2009, 64(16): 3697-3708. |
35 | Garstecki P , Fuerstman M J , Whitesides G M . Oscillations with uniquely long periods in a microfluidic bubble generator[J]. Nature. Phys., 2005,1:168-171. |
36 | Won Y S , Chung D K , Mills A F . Density, viscosity, surface tension, and carbon dioxide solubility and diffusivity of methanol, ethanol, aqueous propanol, and aqueous ethylene glycol at 25℃ [J]. J. Chem. Eng. Data, 1981, 26: 140-141. |
37 | Chalfi T Y , Ghiaasiaan S M . Pressure drop caused by flow area changes in capillaries under low flow conditions [J]. Int. J. Multiphase Flow, 2008, 34(1):2-12. |
38 | Carey V P . Liquid-vapor Phase-change Phenomena [M]. New York : Hemisphere, 1992:521-550. |
39 | Kreutzer M T , Kapteijn F , Moulijn J A , et al . Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels[J]. Chem. Eng. Sci., 2005, 60(22): 5895-5916. |
40 | Berthier J , Silberzan P . Microfluidics for Biotechnology [M]. Boston, London: Artech House, 2010:42-44. |
41 | Abiev R S . Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli- and microchannels[J]. Chem. Eng. J., 2013, 227: 66-79. |
42 | Kuo J S , Chiu D T . Controlling mass transport in microfluidic devices[J]. Annu. Rev. Anal. Chem., 2011, 4: 275-296. |
43 | Waelchli S , von Rohr P R . Two-phase flow characteristics in gas-liquid microreactors[J]. Int. J. Multiphase Flow, 2006, 32(7): 791-806. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||