CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 4089-4098.DOI: 10.11949/j.issn.0438-1157.20190617
• Process safety • Previous Articles
Shicheng SHI1(),Supan WANG1,2,3,Xuhai PAN1,2,3(),Yuheng MA1,Juncheng JIANG1,2,3
Received:
2019-06-02
Revised:
2019-08-07
Online:
2019-10-05
Published:
2019-10-05
Contact:
Xuhai PAN
时事成1(),王苏盼1,2,3,潘旭海1,2,3(),马煜衡1,蒋军成1,2,3
通讯作者:
潘旭海
作者简介:
时事成(1995—),男,硕士研究生,基金资助:
CLC Number:
Shicheng SHI, Supan WANG, Xuhai PAN, Yuheng MA, Juncheng JIANG. Study on mechanism and law of liquid overheating and explosive boiling caused by leakage[J]. CIESC Journal, 2019, 70(10): 4089-4098.
时事成, 王苏盼, 潘旭海, 马煜衡, 蒋军成. 泄漏引发液体过热爆沸机理及规律研究[J]. 化工学报, 2019, 70(10): 4089-4098.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20190617
实验序号 | 初始压力/bar | 初始 液位/% | 平均最大 过热度/℃ | 标准偏差 |
---|---|---|---|---|
1 | 1.7 | 70 | 6.8 | 0.25 |
2 | 2.7 | 70 | 7.3 | 0.15 |
3 | 3.7 | 70 | 8.2 | 0.25 |
4 | 4.7 | 70 | 8.9 | 0.21 |
5 | 2.7 | 50 | 9.4 | 0.32 |
6 | 2.7 | 60 | 7.9 | 0.15 |
7 | 2.7 | 80 | 3.0 | 0.21 |
Table 1 Summary of maximum superheat degree that medium can achieve during boiling under different conditions
实验序号 | 初始压力/bar | 初始 液位/% | 平均最大 过热度/℃ | 标准偏差 |
---|---|---|---|---|
1 | 1.7 | 70 | 6.8 | 0.25 |
2 | 2.7 | 70 | 7.3 | 0.15 |
3 | 3.7 | 70 | 8.2 | 0.25 |
4 | 4.7 | 70 | 8.9 | 0.21 |
5 | 2.7 | 50 | 9.4 | 0.32 |
6 | 2.7 | 60 | 7.9 | 0.15 |
7 | 2.7 | 80 | 3.0 | 0.21 |
序号 | 初始压力/bar | 初始液位/% | 初始气相体积/L | 理论过热时间 t/ms | 实验测量平均过热时间 | 相对误差/% | 平均误差/% |
---|---|---|---|---|---|---|---|
1 | 1.7 | 70 | 5.2 | 54.4 | 49.6 | 9.7 | 9.2 |
2 | 2.7 | 70 | 5.2 | 49.9 | 46.3 | 7.8 | |
3 | 3.7 | 70 | 5.2 | 20.5 | 23.3 | 12.0 | |
4 | 4.7 | 70 | 5.2 | 12.3 | 13.6 | 9.6 | |
5 | 2.7 | 50 | 8.6 | 74.2 | 68.3 | 8.6 | |
6 | 2.7 | 60 | 6.9 | 60.6 | 55.7 | 8.8 | |
7 | 2.7 | 80 | 3.5 | 34.2 | 31.7 | 7.9 |
Table 2 Comparison of theoretical and experimental results of overheat time
序号 | 初始压力/bar | 初始液位/% | 初始气相体积/L | 理论过热时间 t/ms | 实验测量平均过热时间 | 相对误差/% | 平均误差/% |
---|---|---|---|---|---|---|---|
1 | 1.7 | 70 | 5.2 | 54.4 | 49.6 | 9.7 | 9.2 |
2 | 2.7 | 70 | 5.2 | 49.9 | 46.3 | 7.8 | |
3 | 3.7 | 70 | 5.2 | 20.5 | 23.3 | 12.0 | |
4 | 4.7 | 70 | 5.2 | 12.3 | 13.6 | 9.6 | |
5 | 2.7 | 50 | 8.6 | 74.2 | 68.3 | 8.6 | |
6 | 2.7 | 60 | 6.9 | 60.6 | 55.7 | 8.8 | |
7 | 2.7 | 80 | 3.5 | 34.2 | 31.7 | 7.9 |
1 | AbbasiT, AbbasiS A. The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management[J]. Journal of Hazardous Materials, 2007, 141(3): 489-519. |
2 | 王晓东, 田勇, 彭晓峰, 等. 沸腾核心内部结构及其演化特性[J]. 化工学报, 2005, 56(5): 812-815. |
WangX D, TianY, PengX F, et al. Inner structure and evolution of boiling nucleus[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(5): 812-815. | |
3 | HemmatianB, PlanasE, CasalJ. Fire as a primary event of accident domino sequences: the case of BLEVE[J]. Reliability Engineering & System Safety, 2015, 139: 141-148. |
4 | TauseefS M, AbbasiT, AbbasiS A. Risks of fire and explosion associated with the increasing use of liquefied petroleum gas[J]. Journal of Failure Analysis and Prevention, 2010, 10(4): 322-333. |
5 | 陈思凝. 沸腾液体膨胀蒸气爆炸(BLEVE)动力演化机理的小尺寸模拟试验研究[D]. 合肥: 中国科学技术大学, 2007. |
ChenS N. Small scale experimental study on boiling liquid expanding vapor explosions mechanism[D]. Hefei: University of Science and Technology of China, 2007. | |
6 | 石剑云. 液化气体的热分层及爆沸机理研究[D]. 大连: 大连理工大学, 2015. |
ShiJ Y. Research on the mechanisms of thermal stratification and explosive boiling of liquefied gas[D]. Dalian: Dalian University of Technology, 2015. | |
7 | BartákJ. A study of the rapid depressurization of hot water and the dynamics of vapor bubble generation in superheated water[J]. International Journal of Multiphase Flow, 1990, 16(5): 789-798. |
8 | 李清, 张德平, 孙瑞艳, 等. 固态CO2-BLEVE过程中的压力与温度变化试验研究[J]. 安全与环境学报, 2018, 18(6): 103-109. |
LiQ, ZhangD P, SunR Y, et al. Experimental approach to the pressure and temperature changes in the solid CO2-BLEVE process[J]. Journal of Safety and Environment, 2018, 18(6): 103-109. | |
9 | REIDR C. Possible mechanism for pressurized-liquid tank explosions or BLEVE’s[J]. Science, 1979, 203(4386): 1263-1265. |
10 | BjerketvedtD, EgebergK, KeW, et al. Boiling liquid expanding vapour explosion in CO2 small scale experiments[J]. Energy Procedia, 2011, 4(1): 2285-2292. |
11 | BartakJ. A study of the rapid depressurization of hot water and the dynamics of vapour bubble generation in superheated water[J]. International Journal of Multiphase Flow, 1990, 16(5): 789-798. |
12 | ZhangQ, BiQ, WuJ, et al. Experimental investigation on the rapid evaporation of high-pressure R113 liquid due to sudden depressurization[J]. International Journal of Heat and Mass Transfer, 2013, 61: 646-653. |
13 | McDevittC A, ChanC K, StewardF R, et al. Initiation step of boiling liquid expanding vapor explosions[J]. Journal of Hazardous Materials, 1990, 25(1): 169-180. |
14 | NutterD W, O'nealD L. Modeling the transient outlet pressure and mass flow during flashing of HCFC-22 in a small nonadiabatic vessel[J]. Mathematical & Computer Modelling An International Journal, 1999, 29(8): 105-116. |
15 | SumathipalaK, VenartJ E S, StewardF R. Two-phase swelling and entrainment during pressure relief valve discharges[J]. Journal of Hazardous Materials, 1990, 25(1): 219-236. |
16 | StawczykJ. Experimental evaluation of LPG tank explosion hazards[J]. Journal of Hazardous Materials, 2003, 96(2/3): 189-200. |
17 | ChenS N, SunJ H, ChuG Q. Small scale experiments on boiling liquid expanding vapor explosions: vessel over-pressure[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(1): 45-51. |
18 | ChenS N, SunJ, WeiW. Boiling liquid expanding vapor explosion: experimental research in the evolution of the two-phase flow and over-pressure[J]. Journal of Hazardous Materials, 2008, 156(1): 530-537. |
19 | BirkA M, PoirierD, DavisonC. On the response of 500 gal propane tanks to a 25% engulfing fire[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 527-541. |
20 | BirkA M, DavisonC, CunninghamM. Blast overpressures from medium scale BLEVE tests[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(3): 194-206. |
21 | ShiJ Y, RenJ J, LiuP, et al. Experimental research on the effects of fluid and heater on thermal stratification of liquefied gas[J]. Experimental Thermal and Fluid Science, 2013, 50: 29-36. |
22 | 任婧杰. 热环境下液化气体储罐热质耦合响应机制研究[D]. 大连: 大连理工大学, 2014. |
RenJ J. Research on heat-mass coupling response mechanism of liquefied gas tanks under thermal environments[D]. Dalian: Dalian University of Technology, 2015. | |
23 | RenJ J, ShiJ Y, LiuP, et al. Simulation on thermal stratification and de-stratification in liquefied gas tanks[J]. International Journal of Hydrogen Energy, 2013, 38(10): 4017-4023. |
24 | 周轶. 驱油过程中二氧化碳BLEVE机理及破坏效应研究[D]. 北京: 北京理工大学, 2015. |
ZhouY. Study on the mechanism and damage effect of CO2 boiling liquid expanding vapor explosion in CO2 flooding[D]. Beijing: Beijing Institute of Technology, 2015. | |
25 | LiM Z, LiuZ Y, ZhouY, et al. A small-scale experimental study on the initial burst and the heterogeneous evolution process before CO2 BLEVE[J]. Journal of Hazardous Materials, 2017, 342: 634-642. |
26 | TosseS, VaagsaetherK, BjerketvedtD. An experimental investigation of rapid boiling of CO2[J]. Shock Waves, 2014, 25(3): 277-282. |
27 | PetersonR J, GrewalS S, Ei-WakilM M. Investigations of liquid flashing and evaporation due to sudden depressurization[J]. International Journal of Heat & Mass Transfer, 1984, 27(2): 301-310. |
28 | 王庆慧, 邹伟, 荣皓月. BLEVE超压模型与试验对比分析[J]. 安全与环境学报, 2016, 16(4): 116-120. |
WangQ H, ZouW, RongH Y. BLEVE overpressure model and its experimental comparative analysis[J]. Journal of Safety and Environment, 2016, 16(4): 116-120. | |
29 | 王庆慧. 压力容器蒸汽爆炸临界条件分析及后果仿真[D]. 大庆: 东北石油大学, 2011. |
WangQ H. On vapor explosion critical condition analysis and simulation of the pressure vessel[D]. Daqing: Northeast Petroleum University, 2011. | |
30 | 王庆慧. 实验测定过热水发生BLEVE现象的反应时间[J]. 科学技术与工程, 2010, 10(26):6477-6480. |
WangQ H. The experimental determination reaction time of BLEVE phenomenon produced by superheated water[J]. Science Technology and Engineering, 2010, 10(26): 6477-6480. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||