CIESC Journal ›› 2014, Vol. 65 ›› Issue (4): 1145-1161.DOI: 10.3969/j.issn.0438-1157.2014.04.001
Previous Articles Next Articles
ZHOU Guangzheng, GE Wei
Received:
2013-12-02
Revised:
2013-12-11
Online:
2014-04-05
Published:
2014-04-05
Supported by:
supported by the National Natural Science Foundation of China (21206167, 21225628, 91334204) and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA07080203).
周光正, 葛蔚
通讯作者:
周光正(1981—),男,博士,副研究员。
作者简介:
周光正(1981—),男,博士,副研究员。
基金资助:
国家自然科学基金项目(21206167,21225628,91334204);中国科学院战略性先导科技专项(XDA07080203)。
CLC Number:
ZHOU Guangzheng, GE Wei. Progress of smoothed particle hydrodynamics in complex flows[J]. CIESC Journal, 2014, 65(4): 1145-1161.
周光正, 葛蔚. 光滑粒子动力学方法在复杂流动中的研究进展[J]. 化工学报, 2014, 65(4): 1145-1161.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.04.001
[1] Li S, Liu W K. Meshfree and particle methods and their applications [J]. Applied Mechanics Reviews, 2002, 55: 1-34 [2] Ge W, Li J. Simulation of particle-fluid systems with macro-scale pseudo-particle modeling[J]. Powder Technology, 2003, 137(1/2): 99-108 [3] Liu G R, Gu Y T. An Introduction to Meshfree Methods and Their Programming [M]. Dordrecht: Springer, 2005 [4] Zhang Xiong(张雄), Liu Yan(刘岩), Ma Shang(马上). Meshfree methods and their applications [J]. Advances in Mechanics(力学进展), 2009, 39(1): 1-36 [5] Lucy L B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal, 1977, 82: 1013-1024 [6] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375-389 [7] Monaghan J J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543-574 [8] Monaghan J J. Smoothed particle hydrodynamics [J]. Reports on Progress in Physics, 2005, 68: 1703-1759 [9] Liu M B, Liu G R. Smoothed particle hydrodynamics(SPH): an overview and recent developments [J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76 [10] Liu Moubin(刘谋斌), Zong Zhi(宗智), Chang Jianzhong(常建忠). Developments and applications of smoothed particle hydrodynamics [J]. Advances in Mechanics(力学进展), 2011, 41(2): 217-234 [11] Monaghan J J. Smoothed particle hydrodynamics and its diverse applications [J]. Annual Review of Fluid Mechanics, 2012, 44: 323-346 [12] Morris J P, Fox P J, Zhu Y. Modeling low Reynolds number incompressible flows using SPH [J]. Journal of Computational Physics, 1997, 136: 214-226 [13] Randles P, Libersky L D. Smoothed particle hydrodynamics: some recent improvements and applications [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 375-408 [14] Takeda H, Miyama S M, Sekiya M. Numerical simulation of viscous flow by smoothed particle hydrodynamics [J]. Progress of Theoretical Physics, 1994, 92(5): 939-960 [15] Cleary P W, Monaghan J J. Conduction modelling using smoothed particle hydrodynamics [J]. Journal of Computational Physics, 1999, 148(1): 227-264 [16] Sigalotti L D G, Klapp J, Sira E, Meleá Y, Hasmy A. SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers [J]. Journal of Computational Physics, 2003, 191(2): 622-638 [17] Filipovic N, Ivanovic M, Kojic M. A comparative numerical study between dissipative particle dynamics and smoothed particle hydrodynamics when applied to simple unsteady flows in microfluidics [J]. Microfluidics and Nanofluidics, 2009, 7(2): 227-235 [18] Cummins S J, Rudman M. An SPH projection method [J]. Journal of Computational Physics, 1999, 152(2): 584-607 [19] Shao S, Lo E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface [J]. Advances in Water Resources, 2003, 26: 787-800 [20] Belytschko T, Krongauz Y, Dolbow J, Gerlach C. On the completeness of meshfree particle methods [J]. International Journal for Numerical Methods in Engineering, 1998, 43: 785-819 [21] Liu M B, Liu G R. Restoring particle consistency in smoothed particle hydrodynamics [J]. Applied Numerical Mathematics, 2006, 56: 19-36 [22] Kiara A, Hendrickson K, Yue D K P. SPH for incompressible free-surface flows(Ⅰ): Error analysis of the basic assumptions [J]. Computers & Fluids, 2013, 86: 611-624 [23] Zhou G, Ge W, Li J. Smoothed particles as a non-Newtonian fluid: a case study in Couette flow [J]. Chemical Engineering Science, 2010, 65: 2258-2262 [24] Zhou G, Ge W, Li J. Theoretical analysis on the applicability of traditional SPH method [J]. Chinese Science Bulletin, 2013, 58(24): 2970-2978 [25] Monaghan J J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1994, 110(2): 399-406 [26] Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2003, 191(2): 448-475 [27] Chaniotis A K, Poulikakos D, Koumoutsakos P. Remeshed smooth particle hydrodynamics for the simulation of viscous and heat conducting flows [J]. Journal of Computational Physics, 2002, 182: 67-90 [28] Fatehi R, Manzari M T. A consistent and fast weakly compressible smoothed particle hydrodynamics with a new wall boundary condition [J]. International Journal for Numerical Methods in Fluids, 2012, 68(7): 905-921 [29] Ellero M, Serrano M, Español P. Incompressible smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2007, 226(2): 1731-1752 [30] Hu X Y, Adams N A. An incompressible multi-phase SPH method [J]. Journal of Computational Physics, 2007, 227(1): 264-278 [31] Xu R, Stansby P, Laurence D. Accuracy and stability in incompressible SPH(ISPH) based on the projection method and a new approach [J]. Journal of Computational Physics, 2009, 228(18): 6703-6725 [32] Lee E S, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method [J]. Journal of Computational Physics, 2008, 227(18): 8417-8436 [33] Hughes J P, Graham D I. Comparison of incompressible and weakly-compressible SPH models for free-surface water flows [J]. Journal of Hydraulic Research, 2010, 48(S1): 105-117 [34] Shadloo M S, Zainali A, Yildiz M, Suleman A. A robust weakly compressible SPH method and its comparison with an incompressible SPH [J]. International Journal for Numerical Methods in Engineering, 2012, 89(8): 939-956 [35] Szewc K, Pozorski J, Minier J P. Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method [J]. International Journal for Numerical Methods in Engineering, 2012, 92(4): 343-369 [36] Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids, 1995, 20: 1081-1106 [37] Dilts G A. Moving-least-squares-particle hydrodynamics (Ⅰ): Consistency and stability [J]. International Journal for Numerical Methods in Engineering, 1999, 44: 1115-1155 [38] Chen J K, Beraun J E, Carney T C. A corrective smoothed particle method for boundary value problems in heat conductions [J]. International Journal for Numerical Methods in Engineering, 1999, 46: 231-252 [39] Liu M B, Xie W P, Liu G R. Modeling incompressible flows using a finite particle method [J]. Applied Mathematical Modelling, 2005, 29: 1252-1270 [40] Zhang G M, Batra R C. Symmetric smoothed particle hydrodynamics(SSPH) method and its application to elastic problems [J]. Computational Mechanics, 2009, 43(3): 321-340 [41] Jiang T, Ouyang J, Ren J, Yang B, Xu X. A mixed corrected symmetric SPH(MC-SSPH) method for computational dynamic problems [J]. Computer Physics Communications, 2012, 183: 50-62 [42] Morris J P. Simulating surface tension with smoothed particle hydrodynamics [J]. International Journal for Numerical Methods in Fluids, 2000, 33(3): 333-353 [43] Tartakovsky A M, Meakin P. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability [J]. Journal of Computational Physics, 2005, 207: 610-624 [44] Hu X Y, Adams N A. A multi-phase SPH method for macroscopic and mesoscopic flows [J]. Journal of Computational Physics, 2006, 213(2): 844-861 [45] Hu X Y, Adams N A. A constant-density approach for incompressible multi-phase SPH [J]. Journal of Computational Physics, 2009, 228(6): 2082-2091 [46] Adami S, Hu X, Adams N. A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation [J]. Journal of Computational Physics, 2010, 229(13): 5011-5021 [47] Qiang Hongfu(强洪夫), Chen Fuzhen(陈福振), Gao Weiran(高巍然). Smoothed particle hydrodynamics method with modified surface tension and its implementation [J]. Chinese Journal of Computational Physics(计算物理) , 2011, 28(3): 375-384 [48] Zhang M. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method [J]. Journal of Computational Physics, 2010, 229: 7238-7259 [49] Zhang M, Zhang S, Zhang H, Zheng L. Simulation of surface- tension-driven interfacial flow with smoothed particle hydrodynamics method [J]. Computers & Fluids, 2012, 59: 61-71 [50] Tofighi N, Yildiz M. Numerical simulation of single droplet dynamics in three-phase flows using ISPH [J]. Computers & Mathematics with Applications, 2013, 66(4): 525-536 [51] Posch H A, Hoover W G, Kum O. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics [J]. Physical Review E, 1995, 52: 1711-1720 [52] Hoover W G, Hess S. Equilibrium and nonequilibrium thermomechanics for an effective pair poterntial used in smooth particle applied mechanics [J]. Physica A, 1996, 231: 425-438 [53] Español P, Revenga M. Smoothed dissipative particle dynamics [J]. Physical Review E, 2003, 67: 026705 [54] Tartakovsky A M, Meakin P. Modeling of surface tension and contact angles with smoothed particle hydrodynamics [J]. Physical Review E, 2005, 72: 026301 [55] Tartakovsky A M, Meakin P. Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics [J]. Advances in Water Resources, 2006, 29: 1464-1478 [56] Tartakovsky A M, Ward A L, Meakin P. Pore-scale simulations of drainage of heterogeneous and anisotropic porous media [J]. Physics of Fluids, 2007, 19: 103301 [57] Ma Liqiang(马理强), Chang Jianzhong(常建忠), Liu Hantao(刘汉涛), Liu Moubin(刘谋斌). Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method [J]. Acta Physica Sinica(物理学报), 2012, 61(5): 054701 [58] Su Tiexiong(苏铁熊), Ma Liqiang(马理强), Liu Moubin(刘谋斌), Chang Jianzhong(常建忠). A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method [J]. Acta Physica Sinica(物理学报), 2013, 62(6): 064702 [59] Zhou G, Ge W, Li J. A revised surface tension model for macro-scale particle methods [J]. Powder Technology, 2008, 183: 21-26 [60] Zhou G, Chen Z, Ge W, Li J. SPH simulation of oil displacement in cavity-fracture structures [J]. Chemical Engineering Science, 2010, 65: 3363-3371 [61] Zhou G, Ge W, Li B, Li X, Wang P, Wang J, Li J. SPH simulation of selective withdrawal from microcavity [J]. Microfluidics and Nanofluidics, 2013, 15(4): 481-490 [62] Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows [J]. Journal of Computational Physics, 2009, 228(22): 8380-8393 [63] Szewc K, Pozorski J, Minier J P. Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics [J]. International Journal of Multiphase Flow, 2013, 50: 98-105 [64] Das A K, Das P K. Bubble evolution through submerged orifice using smoothed particle hydrodynamics: basic formulation and model validation [J]. Chemical Engineering Science, 2009, 64(10): 2281-2290 [65] Monaghan J J, Rafiee A. A simple SPH algorithm for multi-fluid flow with high density ratios [J]. International Journal for Numerical Methods in Fluids, 2013, 71(5): 537-561 [66] Nugent S, Posch H A. Liquid drops and surface tension with smoothed particle applied mechanics [J]. Physical Review E, 2000, 62(4): 4968-4975 [67] Meleán Y, Sigalotti L D G. Coalescence of colliding van der Waals liquid drops [J]. International Journal of Heat and Mass Transfer, 2005, 48(19): 4041-4061 [68] López H, Sigalotti L D G. Oscillation of viscous drops with smoothed particle hydrodynamics [J]. Physical Review E, 2006, 73(5): 051201 [69] Tartakovsky A M, Ferris K F, Meakin P. Lagrangian particle model for multiphase flows [J]. Computer Physics Communications, 2009, 180: 1874-1881 [70] Han Xu(韩旭), Yang Gang(杨刚), Long Shuyao(龙述尧). Typical application of SPH method to two-phase flow problems [J]. Journal of Hunan University: Natural Sciences(湖南大学学报: 自然科学版), 2007, 34(1): 29-32 [71] Liu M B, Liu G R, Lam K Y, Zong Z. Smoothed particle hydrodynamics for numerical simulation of underwater explosion [J]. Computational Mechanics, 2003, 30(2): 106-118 [72] Xu Z, Meakin P, Tartakovsky A M. Diffuse-interface model for smoothed particle hydrodynamics [J]. Physical Review E, 2009, 79: 036702 [73] Das A K, Das P K. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics [J]. Langmuir, 2009, 25(19): 11459-11466 [74] Das A K, Das P K. Incorporation of diffuse interface in smoothed particle hydrodynamics: implementation of the scheme and case studies [J]. International Journal for Numerical Methods in Fluids, 2011, 67(6): 671-699 [75] Farhat C, Geuzaine P, Brown G. Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter [J]. Computers & Fluids, 2003, 32: 3-29 [76] Mittal R, Iaccarino G. Immersed boundary methods [J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261 [77] Yu Z. A DLM/FD method for fluid/flexible-body interactions [J]. Journal of Computational Physics, 2005, 207(1): 1-27 [78] Monaghan J J, Kos A, Issa N. Fluid motion generated by impact [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2003, 129(6): 250-259 [79] Qiu L. Two-dimensional SPH simulations of landslide-generated water waves [J]. Journal of Hydraulic Engineering, 2008, 134(5): 668-671 [80] Kajtar J, Monaghan J J. SPH simulations of swimming linked bodies [J]. Journal of Computational Physics, 2008, 227(19): 8568-8587 [81] Oger G, Doring M, Alessandrini B, Ferrant P. Two-dimensional SPH simulations of wedge water entries [J]. Journal of Computational Physics, 2006, 213(2): 803-822 [82] Shao S. Incompressible SPH simulation of water entry of a free-falling object [J]. International Journal for Numerical Methods in Fluids, 2009, 59(1): 91-115 [83] Omidvar P, Stansby P K, Rogers B D. Wave body interaction in 2D using smoothed particle hydrodynamics(SPH) with variable particle mass [J]. International Journal for Numerical Methods in Fluids, 2012, 68(6): 686-705 [84] Potapov A V, Hunt M L, Campbell C S. Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method [J]. Powder Technology, 2001, 116(2): 204-213 [85] Qiu L. Numerical modelling of liquid-particle flows by combining SPH and DEM [J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11313-11318 [86] Ma J, Ge W, Wang X, Wang J, Li J. High-resolution simulation of gas-solid suspension using macro-scale particle methods [J]. Chemical Engineering Science, 2006, 61(21): 7096-7106 [87] Xiong Q, Li B, Chen F, Ma J, Ge W, Li J. Direct numerical simulation of sub-grid structures in gas-solid flow—GPU implementation of macro-scale pseudo-particle modeling [J]. Chemical Engineering Science, 2010, 65(19): 5356-5365 [88] Sun X, Sakai M, Yamada Y. Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method [J]. Journal of Computational Physics, 2013, 248: 147-176 [89] Robinson M, Ramaioli M, Luding S. Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation [J]. International Journal of Multiphase Flow, 2014, 59: 121-134 [90] Monaghan J J, Kocharyan A. SPH simulation of multi-phase flow [J]. Computer Physics Communication, 1995, 87: 225-235 [91] Xiong Q, Deng L, Wang W, Ge W. SPH method for two-fluid modeling of particle-fluid fluidization [J]. Chemical Engineering Science, 2011, 66(9): 1859-1865 [92] Deng L, Liu Y, Wang W, Ge W, Li J. A two-fluid smoothed particle hydrodynamics(TF-SPH) method for gas-solid fluidization [J]. Chemical Engineering Science, 2013, 99: 89-101 [93] Benz W, Asphaug E. Simulations of brittle solids using smooth particle hydrodynamics [J]. Computer Physics Communications, 1995, 87(1/2): 253-265 [94] Zhang Gangming(张刚明), Wang Xiaojun(王肖钧), Wang Yuanbo(王元博), Wang Ji(王吉), Wang Feng(王峰). Smoothed particle hydrodynamics method to numerical simulation of hypervelocity impact [J]. Chinese Journal of Computational Physics(计算物理), 2003, 20(5): 447-454 [95] Swegle J, Hicks D, Attaway S. Smoothed particle hydrodynamics stability analysis [J]. Journal of Computational Physics, 1995, 116(1): 123-134 [96] Fu Xuejin(傅学金), Qiang Hongfu(强洪夫), Yang Yuecheng(杨月诚). Advances in the tensile instability of smoothed particle hydrodynamics applied to solid dynamics [J]. Advances in Mechanics (力学进展), 2007, 37(3): 375-388 [97] Dyka C T, Randles P W, Ingel R P. Stress points for tension instability in SPH [J]. International Journal for Numerical Methods in Engineering, 1997, 40(13): 2325-2341 [98] Rabczuk T, Belytschko T, Xiao S. Stable particle methods based on Lagrangian kernels [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12):1035-1063 [99] Chen J K, Beraun J E, Jih C J. An improvement for tensile instability in smoothed particle hydrodynamics [J]. Computational Mechanics, 1999, 23(4): 279-287 [100] Yang Xiufeng(杨秀峰), Liu Moubin(刘谋斌). Improvement on stress instability in smoothed particle hydrodynamics [J]. Acta Physica Sinica(物理学报), 2012, 61(22): 224701 [101] Qiu Liuchao(邱流潮). Numerical simulation of deformation process of viscous liquid drop based on the incompressible smoothed particle hydrodynamics [J]. Acta Physica Sinica(物理学报), 2013, 62(12): 124702 [102] Monaghan J J. SPH without a tensile instability [J]. Journal of Computational Physics, 2000, 159(2): 290-311 [103] Gray J P, Monaghan J J, Swift R P. SPH elastic dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49): 6641-6662 [104] Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid-structure interaction by SPH [J]. Computers & Structures, 2007, 85(11): 879-890 [105] Amini Y, Emdad H, Farid M. A new model to solve fluid-hypo-elastic solid interaction using the smoothed particle hydrodynamics(SPH) method [J]. European Journal of Mechanics B/Fluids, 2011, 30(2): 184-194 [106] Rafiee A, Thiagarajan K P. An SPH projection method for simulating fluid-hypoelastic structure interaction [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198: 2785-2795 [107] Xiao Yihua(肖毅华), Han Xu(韩旭), Hu De’an(胡德安). Simulating fluid-structure interaction with FE-SPH method [J]. Chinese Journal of Applied Mechanics(应用力学学报), 2011, 28(1): 13-18 [108] Chen D T N, Wen Q, Janmey P A, Crocker J C, Yodh A G. Rheology of soft materials [J]. Annual Review of Condensed Matter Physics, 2010, 1: 301-322 [109] Xu X, Ouyang J, Yang B, Liu Z. SPH simulations of three-dimensional non-Newtonian free surface flows [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 256: 101-116 [110] Zhu H, Martys N S, Ferraris C, Kee D D. A numerical study of the flow of Bingham-like fluids in two-dimensional vane and cylinder rheometers using a smoothed particle hydrodynamics(SPH) based method [J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(7/8): 362-375 [111] Fan X J, Tanner R, Zheng R. Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow [J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(5): 219-226 [112] Hosseini S, Manzari M, Hannani S. A fully explicit three-step SPH algorithm for simulation of non-Newtonian fluid flow [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2007, 17(7): 715-735 [113] Ellero M, Kröger M, Hess S. Viscoelastic flows studied by smoothed particle dynamics [J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 105(1): 35-51 [114] Ellero M, Tanner R I. SPH simulations of transient viscoelastic flows at low Reynolds number [J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 132(1/2/3): 61-72 [115] Vázquez-Quesada A, Ellero M. SPH simulations of a viscoelastic flow around a periodic array of cylinders confined in a channel [J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 167/168: 1-8 [116] Hashemi M, Fatehi R, Manzari M. SPH simulation of interacting solid bodies suspended in a shear flow of an Oldroyd-B fluid [J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(21): 1239-1252 [117] Zainali A, Tofighi N, Shadloo M S, Yildiz M. Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 99-113 [118] Yang Bo(杨波),Ouyang Jie(欧阳洁),Jiang Tao(蒋涛),Xu Xiaoyang(许晓阳). Numerical simulation of the viscoelastic flows for PTT model by the SPH method [J]. Chinese Journal of Theoretical and Applied Mechanics(力学学报), 2011, 43(4): 667-773 [119] Ren J, Ouyang J, Jiang T, Li Q. A corrected symmetric SPH method to simulate viscoelastic free surface flows based on the PTT model [J]. International Journal for Numerical Methods in Fluids, 2012, 70(12): 1494-1517 [120] Xu X, Ouyang J. An SPH-based particle method for simulating 3D transient free surface flows of branched polymer melts [J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 202: 54-71 [121] Ji Shunying(季顺迎), Yue Qianjin(岳前进). Numerical simulation of local drifting sea ice in Liaodong Bay by smoothed particle hydrodynamics method [J]. Hydro-science and Engineering(水利水运工程学报), 2001, 4: 8-15 [122] Ji Shunying(季顺迎), Yue Qianjin(岳前进), Wang Ruixue(王瑞学). Advances in numerical methods for sea ice dynamics [J]. Advances in Earth Science(地球科学进展), 2004, 19(6): 963-970 [123] Fang J, Owens R G, Tacher L, Parriaux A. A numerical study of the SPH method for simulating transient viscoelastic free surface flows [J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 139(1): 68-84 [124] Rafiee A, Manzari M, Hosseini M. An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows [J]. International Journal of Non-linear Mechanics, 2007, 42(10): 1210-1223 [125] Jiang T, Ouyang J, Yang B, Ren J. The SPH method for simulating a viscoelastic drop impact and spreading on an inclined plate [J]. Computational Mechanics, 2010, 45(6): 573-583 [126] Xu X, Ouyang J, Jiang T, Li Q. Numerical simulation of 3D-unsteady viscoelastic free surface flows by improved smoothed particle hydrodynamics method [J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 177-178: 109-120 [127] Dalrymple R A, Rogers B D. Numerical modeling of water waves with the SPH method [J]. Coastal Engineering, 2006, 53(2): 141-147 [128] Shao S, Ji C, Graham D I, Reeve D E, James P W, Chadwick A J. Simulation of wave overtopping by an incompressible SPH model [J]. Coastal Engineering, 2006, 53(9): 723-735 [129] Shi Y, Ellero M, Adams N A. Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence [J]. Physical Review E, 2012, 85(3): 036708 [130] Szewc K, Pozorski J, Tanière A. Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation [J]. International Journal of Heat and Mass Transfer, 2011, 54(23): 4807-4816 [131] Tartakovsky A M, Meakin P, Scheibe T D, West R M E. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2007, 222(2): 654-672 [132] Tartakovsky A M. Langevin model for reactive transport in porous media [J]. Physical Review E, 2010, 82(2): 026302 [133] Vanaverbeke S, Keppens R, Poedts S, Boffin H. GRADSPH: a parallel smoothed particle hydrodynamics code for self-gravitating astrophysical fluid dynamics [J]. Computer Physics Communications, 2009, 180(7): 1164-1182 [134] Cherfils J, Pinon G, Rivoalen E. JOSEPHINE: a parallel SPH code for free-surface flows [J]. Computer Physics Communications, 2012, 183(7): 1468-1480 [135] Gomez-Gesteira M, Rogers B, Crespo A, Dalrymple R, Narayanaswamy M, Dominguez J. SPHysics — development of a free-surface fluid solver (Ⅰ): Theory and formulations [J]. Computers & Geosciences, 2012, 48: 289-299 [136] Domínguez J M, Crespo A J C, Gómez-Gesteira M. Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method [J]. Computer Physics Communications, 2013, 184: 617-627 [137] Xiong Q, Li B, Xu J. GPU-accelerated adaptive particle splitting and merging in SPH [J]. Computer Physics Communications, 2013, 184: 1701-1707 [138] Lastiwka M, Quinlan N, Basa M. Adaptive particle distribution for smoothed particle hydrodynamics [J]. International Journal for Numerical Methods in Fluids, 2005, 47(10/11): 1403-1409 [139] Feldman J, Bonet J. Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems [J]. International Journal for Numerical Methods in Engineering, 2007, 72(3): 295-324 [140] Vacondio R, Rogers B D, Stansby P K, Mignosa P, Feldman J. Variable resolution for SPH: a dynamic particle coalescing and splitting scheme [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 256: 132-148 [141] Koumoutsakos P. Multiscale flow simulations using particles [J]. Annual Review of Fluid Mechanics, 2005, 37: 457-487 |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[5] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[6] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[7] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[8] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[9] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[10] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[11] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[12] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[13] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[14] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[15] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||