[1] Azlan Hussain M. Review of the applications of neural networks in chemical process control—simulation and online implementation[J]. Artificial Intelligence in Engineering, 1999, 13(1): 55-68
[2] Shen Zhi(沈植), Yang Dong(杨冬), Chen Gongming(陈功名), Xiao Feng(肖峰). Heat transfer characteristics of high temperature and pressure water in vertical downward tube[J]. CIESC Journal (化工学报), 2013, 64(7): 2386-2393
[3] Ren Congjing(任聪静), Wang Jingdai(王靖岱), Zhang Xiaohuan(张晓欢), Yang Yongrong(阳永荣). Measurement of slurry suspension height in stirred tank by multi-scale analysis of acoustic emission technology[J].Journal of Chemical Industry and Engineering (China) (化工学报), 2008, 59(6): 1383-1389
[4] Zhang J. Improved on-line process fault diagnosis through information fusion in multiple neural networks[J].Computers & Chemical Engineering, 2006, 30(3): 558-571
[5] Deng X G, Tian X M. Sparse kernel locality preserving projection and its application in nonlinear process fault detection[J]. Chinese Journal of Chemical Engineering, 2013, 21(2): 163-170
[6] Bai Rui(白锐), Chai Tianyou(柴天佑). Optimization control of ball mill load in blending process with data fusion and case-based reasoning[J]. CIESC Journal (化工学报), 2009, 60(7): 1746-1752
[7] Yue Yuanlong, Zuo Xin, Luo Xionglin. Confidence level based on ridge estimator in process measurements and its application[J]. Chinese Journal of Chemical Engineering, 2013,21(10):1144-1154
[8] Feng Z G, Teo K L, Ahmed N U, Zhao Y, Yan W Y. Optimal fusion of sensor data for discrete Kalman filtering[J]. Dynamic Systems and Applications, 2007, 16(2): 393-406
[9] Gan Q, Harris C J. Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1): 273-279
[10] Caron F, Duflos E, Pomorski D, Vanheeghe P. GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects[J]. Information Fusion, 2006, 7(2): 221-230
[11] Salahshoor K, Mosallaei M, Bayat M. Centralized and decentralized process and sensor fault monitoring using data fusion based on adaptive extended Kalman filter algorithm[J]. Measurement, 2008, 41(10): 1059-1076
[12] Chang K C, Zhi T, Saha R K. Performance evaluation of track fusion with information matrix filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 455-466
[13] Gao J B, Harris C J. Some remarks on Kalman filters for the multisensor fusion[J]. Information Fusion, 2002, 3(3): 191-201
[14] Benaskeur A R. Consistent fusion of correlated data sources//IEEE 28th Annual Conference of the Industrial Electronics Society[C]. 2002, 4: 2652-2656
[15] Kennedy H L. Fusion of possibly biased location estimates using Gaussian mixture models[J]. Information Fusion, 2012, 13(3): 214- 222
[16] Uhlmann J K. Covariance consistency methods for fault-tolerant distributed data fusion[J]. Information Fusion, 2003, 4(3): 201-215
[17] Zervas E, Mpimpoudis A, Anagnostopoulos C, Sekkas O, Hadjiefthymiades S. Multisensor data fusion for fire detection[J]. Information Fusion, 2011, 12(3): 150-159
[18] Yue Yuanlong(岳元龙),Zuo Xin(左信),Luo Xionglin(罗雄麟). Improving measurement reliability based on biased estimation[J]. CIESC Journal (化工学报),2013,64(9):3270-3276
[19] Qiu H Z, Zhang H Y, Jin H. Fusion algorithm of correlated local estimates[J]. Aerospace Science and Technology, 2004, 8(7): 619-626 |