CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4087-4094.DOI: 10.11949/0438-1157.20220446
• Energy and environmental engineering • Previous Articles Next Articles
Yongqian WANG1(), Ping WANG1(), Kang CHENG1, Chenlin MAO1, Wenfeng LIU1, Zhicheng YIN1, Antonio Ferrante1,2
Received:
2022-03-28
Revised:
2022-05-21
Online:
2022-10-09
Published:
2022-09-05
Contact:
Ping WANG
王永倩1(), 王平1(), 程康1, 毛晨林1, 刘文锋1, 尹智成1, Ferrante Antonio1,2
通讯作者:
王平
作者简介:
王永倩(1997—),女,硕士研究生,972258645@qq.com
基金资助:
CLC Number:
Yongqian WANG, Ping WANG, Kang CHENG, Chenlin MAO, Wenfeng LIU, Zhicheng YIN, Antonio Ferrante. Stability and NO production of lean premixed ammonia/methane turbulent swirling flame[J]. CIESC Journal, 2022, 73(9): 4087-4094.
王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094.
Add to citation manager EndNote|Ris|BibTeX
ϕ | |
---|---|
0.65 | 0~0.60 |
0.70 | 0~0.60 |
0.75 | 0~0.60 |
0.80 | 0~0.60 |
Table 1 The state parameters studied in the experiment
ϕ | |
---|---|
0.65 | 0~0.60 |
0.70 | 0~0.60 |
0.75 | 0~0.60 |
0.80 | 0~0.60 |
1 | Liu T, Zhou N, Wu Q S, et al. Toward a sustainable energy system in China: status and influencing factors[J]. Energy Exploration & Exploitation, 2022, 40(2): 580-598. |
2 | Valera-Medina A, Amer-Hatem F, Azad A K, et al. Review on ammonia as a potential fuel: from synthesis to economics[J]. Energy & Fuels, 2021, 35(9): 6964-7029. |
3 | 翟瑞, 杨昭, 张勇, 等. 可燃工质氨的燃烧及阻燃机理的研究[J]. 化工学报, 2021, 72(10): 5424-5429. |
Zhai R, Yang Z, Zhang Y, et al. Study on combustion and flame retardant mechanism of combustible working fluid ammonia[J]. CIESC Journal, 2021, 72(10): 5424-5429. | |
4 | 王鲁丰, 钱鑫, 邓丽芳, 等. 氮气电化学合成氨催化剂研究进展[J]. 化工学报, 2019, 70(8): 2854-2863. |
Wang L F, Qian X, Deng L F, et al. Recent progress on catalysts about electrochemical synthesis of ammonia from nitrogen[J]. CIESC Journal, 2019, 70(8): 2854-2863. | |
5 | Kobayashi H, Hayakawa A, Somarathne K D K A, et al. Science and technology of ammonia combustion[J]. Proceedings of the Combustion Institute, 2019, 37(1): 109-133. |
6 | Lesmana H, Zhu M M, Zhang Z Z, et al. Experimental and kinetic modelling studies of flammability limits of partially dissociated NH3 and air mixtures[J]. Proceedings of the Combustion Institute, 2021, 38(2): 2023-2030. |
7 | Li S, Zhang S S, Zhou H, et al. Analysis of air-staged combustion of NH3/CH4 mixture with low NO x emission at gas turbine conditions in model combustors[J]. Fuel, 2019, 237: 50-59. |
8 | Kurata O, Iki N, Matsunuma T, et al. Performances and emission characteristics of NH3-air and NH3CH4-air combustion gas-turbine power generations[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3351-3359. |
9 | Somarathne K D K A, Hayakawa A, Kobayashi H. Numerical investigation on the combustion characteristics of turbulent premixed ammonia/air flames stabilized by a swirl burner[J]. Journal of Fluid Science and Technology, 2016, 11(4): JFST0026. |
10 | Hayakawa A, Arakawa Y, Mimoto R, et al. Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor[J]. International Journal of Hydrogen Energy, 2017, 42(19): 14010-14018. |
11 | 周永浩, 李艳超, 姜海鹏, 等. 氨气预混旋流燃烧火焰稳定性及燃烧极限研究[J]. 工程热物理学报, 2018, 39(7): 1592-1597. |
Zhou Y H, Li Y C, Jiang H P, et al. Experimental studies on flame instability and combustion limit of premixed ammonia swirl combustion[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1592-1597. | |
12 | Li J, Huang H Y, Kobayashi N, et al. Numerical study on effect of oxygen content in combustion air on ammonia combustion[J]. Energy, 2015, 93: 2053-2068. |
13 | Hayakawa A, Goto T, Mimoto R, et al. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures[J]. Fuel, 2015, 159: 98-106. |
14 | Xiao H, Howard M, Valera-Medina A, et al. Study on reduced chemical mechanisms of ammonia/methane combustion under gas turbine conditions[J]. Energy & Fuels, 2016, 30(10): 8701-8710. |
15 | Valera-Medina A, Marsh R, Runyon J, et al. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation[J]. Applied Energy, 2017, 185: 1362-1371. |
16 | Elbaz A M, Giri B R, Issayev G, et al. Experimental and kinetic modeling study of laminar flame speed of dimethoxymethane and ammonia blends[J]. Energy & Fuels, 2020, 34(11): 14726-14740. |
17 | Ji C W, Wang Z, Wang D, et al. Experimental and numerical study on premixed partially dissociated ammonia mixtures (I): Laminar burning velocity of NH3/H2/N2/air mixtures[J]. International Journal of Hydrogen Energy, 2022, 47(6): 4171-4184. |
18 | Rocha R C, Zhong S H, Xu L L, et al. Structure and laminar flame speed of an ammonia/methane/air premixed flame under varying pressure and equivalence ratio[J]. Energy & Fuels: an American Chemical Society Journal, 2021, 35(9): 7179-7192. |
19 | Cheng M Z, Wang H O, Xiao H, et al. Emission characteristics and heat release rate surrogates for ammonia premixed laminar flames[J]. International Journal of Hydrogen Energy, 2021, 46(24): 13461-13470. |
20 | Lhuillier C, Brequigny P, Contino F, et al. Experimental investigation on ammonia combustion behavior in a spark-ignition engine by means of laminar and turbulent expanding flames[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5859-5868. |
21 | Okafor E C, Naito Y, Colson S, et al. Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames[J]. Combustion and Flame, 2018, 187: 185-198. |
22 | 刘涛. 航空发动机旋流燃烧器性能数值模拟[D]. 天津: 天津大学, 2018. |
Liu T. Numerical simulation study on performances of swirl burners in aero-engine combustors[D]. Tianjin: Tianjin University, 2018. | |
23 | 代威, 林宇震, 张弛. 第2级径向旋流器旋流数对燃烧室点火和贫油熄火性能的影响[J]. 航空动力学报, 2015, 30(5): 1092-1098. |
Dai W, Lin Y Z, Zhang C. Effects of swirl number of second stage radial swirler on combustor ignition and lean blow-out performances[J]. Journal of Aerospace Power, 2015, 30(5): 1092-1098. | |
24 | de Toni A, Hayashi T, Schneider P. A reactor network model for predicting NO x emissions in an industrial natural gas burner[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2013, 35(3): 199-206. |
25 | Xiao H, Valera-Medina A, Marsh R, et al. Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions[J]. Fuel, 2017, 196: 344-351. |
26 | Innocenti A, Andreini A, Bertini D, et al. Turbulent flow-field effects in a hybrid CFD-CRN model for the prediction of NO x and CO emissions in aero-engine combustors[J]. Fuel, 2018, 215: 853-864. |
27 | 毛晨林, 王平, Shrotriya Prashant, 等. 含氨燃料预混火焰的层流火焰速度及NO排放特性[J]. 化工学报, 2021, 72(10): 5330-5343. |
Mao C L, Wang P, Shrotriya P, et al. Laminar flame speed and NO emission characteristics of premixed flames with different ammonia-containing fuels[J]. CIESC Journal, 2021, 72(10): 5330-5343. | |
28 | Goodwin D G, Moffat H K, Speth R L. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (version 2.3.0)[J/OL].[2022-03-28]. . |
29 | Xiao H, Valera-Medina A, Bowen P J. Study on premixed combustion characteristics of co-firing ammonia/methane fuels[J]. Energy, 2017, 140: 125-135. |
30 | Hayakawa A, Goto T, Mimoto R, et al. NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures[J]. Mechanical Engineering Journal, 2015, 2(1): 14-00402. |
31 | 周永浩, 张宗岭, 胡思彪, 等. NH3/H2预混旋流火焰稳定性及燃烧极限实验研究[J]. 工程热物理学报, 2021, 42(1): 246-253. |
Zhou Y H, Zhang Z L, Hu S B, et al. Experimental studies on flame stability and combustion limit of premixed NH3/H2 swirl combustion[J]. Journal of Engineering Thermophysics, 2021, 42(1): 246-253. | |
32 | Han X L, Wang Z H, Costa M, et al. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames[J]. Combustion and Flame, 2019, 206: 214-226. |
33 | 韩昕璐. 新型零碳氨燃料的基础层流燃烧特性及反应动力学机理研究[D]. 杭州: 浙江大学, 2021. |
Han X L. Research on fundamental laminar combustion characteristics and reaction kinetic mechanism of innovative carbon-free ammonia fuel[D]. Hangzhou: Zhejiang University, 2021. | |
34 | An Z H, Zhang M, Zhang W J, et al. Emission prediction and analysis on CH4/NH3/air swirl flames with LES-FGM method[J]. Fuel, 2021, 304: 121370. |
35 | Zhang M, An Z H, Wei X T, et al. Emission analysis of the CH4/NH3/air co-firing fuels in a model combustor[J]. Fuel, 2021, 291: 120135. |
36 | Wang Y M, Liang L S, Lin X D, et al. Emissions of nitrogen-based fuel combustion in swirl burner[J]. Energy Procedia, 2019, 158: 1706-1711. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[9] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[12] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[13] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[14] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[15] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||