[1] |
Godavarti R, Sasiekharan R. A comparative analysis of the primary sequences and characteristics of heparinase Ⅰ, Ⅱ and Ⅲ from Flavobacterium heparinum [J]. Biochemical and Biophysical Research Communication, 1996, 229:770-777
|
[2] |
Liu D F, Prjasek K, Shriver Z, et al. Heparinase Ⅲ and uses thereof[P]:US, 6869789B2. 2005-5-22
|
[3] |
Zachary Shriver, Mallikarjun Sundaram,Ram Sasisekharan, et al. Cleavage of the antithrombin Ⅲ binding site in heparin by heparinases and its implication in the generation of low molecular weight heparin [J]. PNAS, 2000, 97:10365-10370
|
[4] |
Wu Jingjun, Zhang Chong, Xing Xinhui, et al. Controllable production of low molecular weight heparins by combinations of heparinase I/II/Ⅲ [J]. Carbohydrate Polymers, 2014, 101: 484-492
|
[5] |
Silva M E,Dietrich C P. Structure of heparin. Characterization of the products formed from heparin by the action of a heparinase from Flavobacterium heparinum [J]. J.Biol.Chem., 1975, 250: 6841-6846
|
[6] |
Sorensen H P,Mortensen K K. Advanced genetic strategies for recombinant protein expression in Escherichia coli [J]. J. Biotechnol., 2005, 115(2):113-128
|
[7] |
Chen Y, Xing X H, Lou K. Construction of recombinant Escherichia coli for over-production of soluble heparinase I by fusion to maltosebinding protein[J]. Biochemical Engineering Journal, 2005, 23(2):155-159
|
[8] |
Godavarti R, Davis M, Cooney C, et al. Heparinase Ⅲ from Flavobacterium heparinum:cloning and recombinant expression in Escherichia coli[J]. Biochem. Biophys. Res. Commun., 1996, 225:751-758
|
[9] |
Su H, Blain F, Musil R A, et al. Isolation and expression in Escherichia coli of hepB and hepC, genes coding for the glycosaminoglycandegrading enzymes Heparinase Ⅱ and Heparinase Ⅲ, respectively, from Flavobacterium heparinum[J]. Appl. Environ. Microbiol., 1996, 62(8):2723-2734
|
[10] |
Hyun Yang-Jin, Lee Jeong Hoon, Kim Dong-Hyun. Cloning, overexpression, and characterization of recombinant heparinase Ⅲ from Bacteroides stercoris HJ-15[J]. Applied Microbiology and Biotechnology, 2010, 86: 879-890
|
[11] |
Gao Xing, Zhao Jian, Yuan Qinsheng, et al. Purification and properties of recombinant GST-haparinase Ⅲ and optimizationm of cultivation conditions[J]. Chin. J. Biotech., 2009, 25(11):1718-1724
|
[12] |
Sorensen H P, Mortensen K K. Advanced genetic strategies for recombinant protein expression in Escherichia coli[J]. J. Biotechnol., 2005, 115(2): 113-128
|
[13] |
Hor L I, Shuman H A. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltosebinding protein interacts with a different subunit of the MalFGK2 membrane transport complex[J]. J. Mol. Biol., 1993, 233(4): 659-670
|
[14] |
Li Ye, Wu Jingjun, Xing Xinhui, et al. Clonging and expression of Heparinase Ⅲ gene from Flavobacterium heparinum and characterization of the recombinant fusion enzyme[J]. Biotechnology Bulletin, 2013(6): 133-139
|
[15] |
Gu K, Linhardt R J, Laliberte M, et al. Purification, characterization and specificity of chondroitin lyases and glycuronidase from Flavobacterium heparinum[J]. Biochem. J., 1995, 312 (Pt 2): 569-577
|
[16] |
Ye F C, Kuang Y, Chen S, et al. Characteristics of low molecular weight heparin production by an ultrafi ltration membrane bioreactor using maltose binding protein fused heparinase I[J]. Biochemical Engineering Journal, 2009, 46(2): 193-198
|
[17] |
Chen Y, Xing X H, Ye F C, et al. Production of MBP-HepA fusion protein in recombinant Escherichia coli by optimization of culture medium[J]. Biochemical Engineering Journal, 2007, 34(2): 114-121
|
[18] |
Han Ji-Hoon,Choi Yun-Seok,Ryu Kyoung-Seok,et al. Codon optimization enhances protein expression of human peptide deformylase in E. coli[J]. Protein Expression and Purification, 2010,70: 224-230
|
[19] |
Chen Y, Xing X H, Ye F C, et al. Soluble expression and rapid quantification of GFP-hepA fusion protein in recombinant Escherichia coli[J]. Chinese Journal of Chemical Engineering, 2007, 15(1): 122-126
|
[20] |
Emma Bäcklund, Marina Ignatushchenko, Gen Larsson. Suppressing glucose uptake and acetic acid production increases membrane protein overexpression in Escherichia coli[J]. Microbial Cell Factories, 2011, 10: 35
|
[21] |
Gu Wanjun,Zhou Tong,Claus O Wilke. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes[J]. PLoS Comput. Biol., 2010, 6(2): e1000664
|
[22] |
Qin Zong, Michèl Schummer, David R Morris, et al. Messenger RNA translation state: the second dimension of high-throughput expression screening[J]. Proc. Natl. Acad. Sci. USA, 1999,96(19): 10632-10636
|
[23] |
Sergey Proshkin, Rachid Rahmouni, Evgeny Nudler, et al. Cooperation between translating ribosomes and RNA polymerase in transcription elongation[J]. Science, 2010, 328: 504-507
|
[24] |
Walt F Lima, Venkatraman Mohan, Stanley T Crooke. The influence of antisense oligonucleotide-induced RNA structure on Escherichia coli RNase H1 activity[J]. The Journal of Biological Chemistry, 1997, 272: 18191-18199
|