[1] |
Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D. The effect of temperature on the proteome of recombinant Pichia pastoris [J]. Proteome. Res., 2009, 8: 1380-1392.
|
[2] |
Dragosits M, Stadlmann J, Graf A, Gasser B, Maurer M, Sauer M, Kreil D P, Altmann F, Mattanovich D. The response to unfolded protein is involved in osmotolerance of Pichia pastoris [J]. BMC Genomics., 2010, 11: 1-16.
|
[3] |
Gao H, Ayyaswamy P S, Ducheyne P. Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating wall vessel [J]. Microgravity Sci. Technol., 1997, 9: 154-165.
|
[4] |
Wolf D A, Schwartz R P. Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head-space tissue culture vessel [R]. NASA Tech. Paper 3143, 1991.
|
[5] |
Mitteregger R, Vogt G, Rossmanith E, Falkenhagen D. Rotary cell culture system (RCCS): a new method for cultivating hepatocytes on micro carriers [J]. Int. J. Arti. Organs., 1999, 22 (12): 816-822.
|
[6] |
Wilson J W, Ott C M, Ramamurthy R, Porwollik S, McClelland M, Pierson D L, Nickerson C A. Low-shear modeled microgravity alters the Salmonella enterica serovar Typhimurium stress response in an RpoS-independent manner [J]. Appl. Environ. Microbiol., 2002, 68 (11): 5408-5416.
|
[7] |
Nickerson C A, Ott C M, Wilson J W, Ramamurthy R, LeBlanc C L, Hönerzu B K, Hammond T, Pierson D L. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis [J]. J. Microbiol. Methods, 2003, 54 (1): 1-11.
|
[8] |
Arnold D, Fang A. Secondary metabolism in simulated microgravity [J]. Chem. Rec., 2001, 1: 333-346.
|
[9] |
Tash J S, Bracho G E. Microgravity alters protein phosphorylation changes during initiation of sea urchin sperm motility [J]. FASEB J., 1999, 13: S43-S54.
|
[10] |
Xiang L, Qi F, Dai D, Li C, Jiang Y. Simulated microgravity affects growth of Escherichia coli and recombinant β-D-glucuronidase production [J]. Appl. Biochem. Biotechnol., 2010, 162 (3): 654-661.
|
[11] |
Qi F, Imdad K, Lü B, Guo X, Li C. Enhancement of recombinant β-D-glucuronidase production under low-shear modeled microgravity in Pichia pastoris [J]. J. Chem. Technol. Biot., 2011, 86 (4): 505-511.
|
[12] |
Boersema P J, Raijmakers R, Lemeer S, Mohammed S, Heck A J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics [J]. Nat. Protoc., 2009, 4 (4): 484-494.
|
[13] |
Wang F, Chen R, Zhu J, Sun D, Song C, Wu Y, Ye M, Wang L, Zou H. A fully automated system with online sample loading, isotope dimethyl labeling and multidimensional separation for high-throughput quantitative proteome analysis [J]. Anal. Chem., 2010, 82 (7): 3007-3015.
|
[14] |
Mortensen P, Gouw J W, Olsen J V, Ong S E, Rigbolt K T, Bunkenborg J, Cox J, Foster L J, Heck A J, Blagoev B, Andersen J S, Mann M, Quant M S. An open source platform for mass spectrometry-based quantitative proteomics [J]. J. Proteome. Res., 2010, 9 (1): 393-403.
|
[15] |
Baker P W, Meyer M L, Leff L G. Escherichia coli growth under modeled reduced gravity [J]. Microgravity Sci. Technol., 2004, 15 (4): 39-44.
|
[16] |
Raja V, Eric M, Laura L. Changes in gene expression of Escherichia coli under conditions of modeled reduced gravity [J]. Microgravity Sci. Technol., 2008, 20: 41-57.
|
[17] |
Arunasri K, Adil M, Venu Charan K, Suvro C, Himabindu R S, Shivaji S. Effect of simulated microgravity on Escherichia coli K12 MG1655 growth and gene expression [J]. PLoS One, 2013, 8 (3): e57860.
|
[18] |
Tucker D L, Ott C M, Huff S, Fofanov Y, Pierson D L, Willson R C, Fox G E. Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity environment [J]. BMC Microbiol., 2007, 7: 15.
|
[19] |
Huang B, Liu N, Rong X, Ruan J, Huang Y. Effects of simulated microgravity and spaceflight on morphological differentiation and secondary metabolism of Streptomyces coelicolor A3(2) [J]. Appl. Microbiol. Biotechnol., 2015, 99 (10): 4409-4422.
|
[20] |
Mairhofer J, Scharl T, Marisch K, Cserjan-Puschmann M, Striedner G. Comparative transcription profiling and in-depth characterization of plasmid-based and plasmid-free Escherichia coli expression systems under production conditions [J]. Appl. Environ. Microbiol., 2013, 79 (12): 3802-3812.
|
[21] |
Marisch K, Bayer K, Scharl T, Mairhofer J, Krempl P M, Hummel K, Razzazi-Fazeli E, Striedner G. A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level [J]. PLoS One, 2013, 8(8): e70516.
|
[22] |
Vogl T, Thallinger G G, Zellnig G, Drew D, Cregg J M, Glieder A, Freigassner M. Towards improved membrane protein production in Pichia pastoris: general and specific transcriptional response to membrane protein overexpression [J]. J. Biotechnol., 2014, 31 (6): 538-552.
|
[23] |
Huangfu Jie, Qi Feng, Liu Hongwei, Zou Hanfa, Muhammad Saad Ahmed, Li Chun. Novel helper factors influencing recombinant protein production in Pichia pastoris based on proteomic analysis under simulated microgravity [J]. Appl. Microbiol. Biotechnol., 2015, 99(2): 653-665.
|