[1] |
Jarne Postmus, Ronald Aardema, Leo J, de Koning. Isoenzyme expression changes in response to high temperature determine the metabolic regulation of increased glycolytic flux in yeast [J]. FEMS Yeast Research, 2012,12: 571-581
|
[2] |
Birgit Rudolph, Katharina M Gebendorfer, Johannes Buchner, Jeannette Winter.Evolution of Escherichia coli for growth at high temperatures[J]. The Journal of Biological Chemistry, 2010, 285(25): 19029-19034
|
[3] |
Ait-Ouazzou A, Mañas P, Condón S, Pagán R, García-Gonzalo D. Role of general stress-response alternative sigma factors σS (RpoS) and σB (SigB) in bacterial heat resistance as a function of treatment medium pH [J]. International Journal of Food Microbiology, 2012, 153: 358-364
|
[4] |
Masayuki Murata, Hiroko Fujimoto, Kaori Nishimura. Molecular strategy for survival at a critical high temperature in E. coli [J]. PLoS One, 2011, 6(6): 1-9
|
[5] |
Lifang Ruan, Aaron Pleitner, Michael G Gänzle, Lynn M McMullen. Solute transport proteins and the outer membrane protein NmpC contribute to heat resistance of Escherichia coli AW1.7[J]. Applied and Environmental Microbiology, 2011, 77(9): 2961-2967
|
[6] |
Eric Guisbert, Takashi Yura, Virgil A Rhodius, Carol A Gross. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response[J]. Microbiology and Molecular. Biology Reviews, 2008, 72(3): 545-554
|
[7] |
Chen Huayou, Chu Zhongmei, ZhangYi, Yang Shengli. Over expression and characterization of the recombinant small heat shock protein from Pyrococcus furiosus [J]. Biotechnology Letters, 2006, 28: 1089-1094
|
[8] |
Li Dongchol, Yang Fan, Lu Bo, Chen Dianfu, Wei Junyang. Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2[J]. Cell Stress and Chaperones, 2011,17: 103-108
|
[9] |
Xue Yanfen, Xu Yi, Liu Ying, Ma Yanhe, Zhou Peijin. Thermoanaerobacter tengcongensis sp.nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51: 1335-1341
|
[10] |
Hilary A Smith, Ashleigh R Burns, Tonya L Shearer, Terry W Snell. Three heat shock proteins are essential for rotifer thermotolerance[J]. Journal of Experimental Marine Biology and Ecology, 2012, 413: 1-6
|
[11] |
James D West, Yanyu Wang, Kevin A Morano. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise[J]. Chemical Research in Toxicology, 2012, 25: 2036-2053
|
[12] |
Rhee Jae-Sung, Kim Ryeo-Ok, Choi Hee-Gu. Molecular and biochemical modulation of heat shock protein 20 (Hsp20) gene by temperature stress and hydrogen peroxide (H2O2) in the monogonont rotifer, Brachionus sp[J]. Comparative Biochemistry and Physiology,Part C, 2011, 154: 19-27
|
[13] |
Kyle A, Zingaro, Eleftherios Terry Papoutsakis. GroESL over expression imparts Escherichia coli tolerance to #em/em#-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns[J]. Metabolic Engineering, 2012, 7(9): 1-10
|
[14] |
Ehrnsperger M, Gräber S, Gaestel M, Buchner J. Binding of nonnative protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation[J]. The EMBO Journal, 1997, 16: 221-229
|
[15] |
Esposito L, Sica F, Sorrentino G, Berisio R, Carotenuto L, Giordano A, Raia C A, Rossi M, Lamzin V S, Wilson K S, Zagari A. Protein crystal growth in the advanced protein crystallization facility on the LMS mission: a comparison of Sulfolobus solfataricus alcohol dehydrogenase crystals grown on the ground and in microgravity[J]. Biological Crystallography, 1998, 54: 386-390
|
[16] |
Ju Young Lee, Kyung Seok Yang, Su A Jang, Bong Hyun Sung, Sun Chang Kim. Engineering butanol-tolerance in Escherichia coli with artificial transcription factor libraries[J]. Biotechnology and Bioengineering, 2010, 108(4): 742-749
|
[17] |
Li Yang(李阳), Tang Lixia(汤丽霞), Zheng Kai(郑楷), Wang Xiong(王雄), Jiang Rongxiang(江荣香). Optimizing expression and purification of recombinant halohydrin dehalogenase from A. radiobacter AD1[J]. CIESC Journal (化工学报), 2010, 61(12): 3213-3219
|
[18] |
Liu Guoqiang(刘国强), Jin Hu(金虎),Gao Minjie(高敏杰),Dai Keke(戴科科),Wang Huihui(汪汇慧),Li Zhen(李震),Shi Zhongping(史仲平). Improvement of porcine interferon-A production and ATP regeneration efficiency by reducing induction temperature[J]. CIESC Journal (化工学报), 2011, 62(2): 444-450
|
[19] |
Annette Haacke, Gabriele Fendrich, Paul Ramage. Chaperone over-expression in Escherichia coli: apparent increased yields of soluble recombinant protein kinases are due mainly to soluble aggregates[J]. Protein Expression and Purification, 2009, 64: 185-193
|
[20] |
Jeffrey G Thomas, Francois Baneyx. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing heat-shock proteins[J]. The Journal of Biological Chemistry, 1996, 271:11141-11147
|
[21] |
Yokoyama K, Kikuchi Y, Yasueda H. Overproduction of DnaJ in Escherichia coli improves in vivo solubility of the recombinant fish-derived transglutaminase[J]. Bioscience, Biotechnology and Biochemistry, 1998, 62(6): 1205-1210
|
[22] |
Mary J Dunlop. Engineering microbes for tolerance to next-generation bio-fuels[J]. Biotechnol.Biofuels, 2011, 4: 32
|
[23] |
Sergios A Nicolaou, Stefan M Gaida, Eleftherios T Papoutsakis. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation[J]. Metabolic. Engineering, 2010, 12(4): 307-331
|
[24] |
Alsaker K V, Paredes C, Papoutsakis E T. Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum[J]. Biotechnology and Bioengineering, 2010, 105(6): 1131-1147
|
[25] |
Christopher A Tomas, Jeffrey Beamish, Eleftherios T Papoutsakis. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum[J]. Journal of Bacteriology, 2004, 186(24): 2006-2018
|
[26] |
James Winkler, Katy C Kao. Transcriptional analysis of Lactobacillus brevis to n-butanol and ferulic acid stress responses[J]. PLoS One, 2011, 6(8): e21438
|