CIESC Journal ›› 2012, Vol. 63 ›› Issue (6): 1723-1728.DOI: 10.3969/j.issn.0438-1157.2012.06.010

Previous Articles     Next Articles

Performance analysis of IDEAL algorithm on unsteady two-phase flows

SUN Dongliang1,XU Jinliang2,TAO Wenquan3   

  1.  
    1State KeyLaboratory of Alternate Electrical Power System withRenewable Energy Sources,NorthChina Electric Power University,Beijing 102206,China;2Beijing KeyLaboratory of Multiphase Flowand Heat Transfer of Lowgrade Energy,North ChinaElectric Power University,Beijing 102206,China;3Xi〖DK〗’an Jiaotong University,Xi〖DK〗’an 710049,Shaanxi,China
  • Received:2011-11-17 Revised:2012-02-25 Online:2012-06-05 Published:2012-06-05

IDEAL算法在非稳态两相流问题中的性能分析

孙东亮1,徐进良2,陶文铨3   

  1.  
    1华北电力大学新能源电力系统国家重点实验室,北京 102206;2华北电力大学低品位能源多相流与传热北京市重点实验室,北京 102206;3西安交通大学能源与动力工程学院,陕西西安 710049
  • 通讯作者: 徐进良

Abstract: For unsteady two-phase flows, the widely-used numerical approaches for solving continuity and momentum equations are fractional-step method and SIMPLE-family algorithms. The advantage of the fractional-step method is that the convergence rate is fast and the disadvantage is that the initial value problem is conditional stability. The SIMPLE-family algorithms are absolute stability for the initial value problem; however, their convergence rates are slow. For overcoming the disadvantage of the traditional SIMPLE-family algorithms, IDEAL algorithm is introduced in this paper. The convergence rates of SIMPLER and IDEAL are compared by two unsteady two-phase flow problems. It is found that IDEAL can enhance the convergence rate greatly, about 5~87 times over SIMPLER. Therefore, it can be concluded that IDEAL overcomes the disadvantages and combines the advantages of the fractional-step method and the SIMPLE-family algorithms.

Key words: two-phase flows, fractionalstep method, SIMPLEfamily algorithms, IDEALIDEAL

摘要: 对于非稳态两相流问题,联立求解连续性方程和动量方程最为广泛使用的方法为:分步方法和SIMPLE系列算法。分步方法的优点是:收敛速度快,缺点是:初值问题条件稳定。SIMPLE系列算法优点是:初值问题绝对稳定,缺点是:收敛速度慢。为了克服传统的SIMPLE系列算法收敛速度慢这一缺点,本文引入了IDEAL算法。本文通过2个非稳态的两相流问题对SIMPLER和IDEAL两种不同算法在收敛速度方面进行了比较。通过比较可以看出IDEAL算法的收敛速度较SIMPLER算法得到了大幅提高,提高了约6~87倍,克服了传统SIMPLE系列算法收敛速度较慢的缺点,同时具有了初值问题绝对稳定和收敛速度快这两个优点。

关键词: 两相流, 分步方法, SIMPLE系列算法, IDEAL算法

CLC Number: