CIESC Journal ›› 2018, Vol. 69 ›› Issue (4): 1703-1713.DOI: 10.11949/j.issn.0438-1157.20170919
Previous Articles Next Articles
ZHANG Yi1,2, LI Jianbo1, WANG Quanhai1, LU Xiaofeng1
Received:
2017-07-17
Revised:
2017-09-30
Online:
2018-04-05
Published:
2018-04-05
Supported by:
supported by the Fundamental Research Funds for the Central Universities (0903005203564).
张弋1,2, 李建波1, 王泉海1, 卢啸风1
通讯作者:
李建波
基金资助:
中央高校基本科研业务费专项资金(0903005203564)。
CLC Number:
ZHANG Yi, LI Jianbo, WANG Quanhai, LU Xiaofeng. Simulation of NOx formation in novel dual circulating fluidized-bed boiler[J]. CIESC Journal, 2018, 69(4): 1703-1713.
张弋, 李建波, 王泉海, 卢啸风. 新型双流化床炉内NOx生成特性数值模拟[J]. 化工学报, 2018, 69(4): 1703-1713.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170919
[1] | GLARBORG P, JENSEN A D, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems[J]. Progress in Energy & Combustion Science, 2003, 29(2):89-113. |
[2] | 游卓, 周志军, 王智化, 等. 分级富氧燃烧控制NOx的一维模型和试验研究[J]. 中国电机工程学报, 2014, 34(26):4462-4468. YOU Z, ZHOU Z J, WANG Z H, et al. One-dimensional model and experimental study of NOx control by staged oxy-fuel combustion[J]. Proceedings of the CSEE, 2014, 34(26):4462-4468. |
[3] | ZHOU H, HUANG Y, MO G Y, et al. Conversion of fuel-N to N2O and NOx during coal combustion in combustors of different scale[J]. Chinese Journal of Chemical Engineering, 2013, 21(9):996-1006. |
[4] | 欧阳子区, 朱建国, 吕清刚. 无烟煤粉经循环流化床预热后燃烧特性及NOx排放特性实验研究[J]. 中国电机工程学报, 2014, 34(11):1748-1754. OUYANG Z Q, ZHU J G, LÜ Q G. Experimental study on combustion and NOx emission of pulverized anthracite coal preheated by a circulating fluidized bed[J]. Proceedings of the CSEE, 2014, 34(11):1748-1754. |
[5] | 曾光, 孙绍增, 赵志强, 等. 不同温度时煤热解中HCN/NH3的析出与CFB锅炉中NOx生成的关联性研究[J]. 中国电机工程学报, 2011, 31(35):47-52. ZENG G, SUN S Z, ZHAO Z Q, et al. Correlation study of HCN/NH3 releasing during coal pyrolysis and NOx formation in a CFB boiler under different temperatures[J]. Proceedings of the CSEE, 2011, 31(35):47-52. |
[6] | 新井纪男. 燃烧生成物的发生与抑制技术[M]. 北京:科学出版社, 2001. ARIA N. The Occurrence and Inhabitation of Combustion Products[M]. Beijing:Science Press, 2001. |
[7] | 王鹏, 文芳, 步学朋, 等. 煤热解特性研究[J]. 煤炭转化, 2005, 28(1):8-13. WANG P, WEN F, BU X P, et al. Pyrolysis characteristics of coal[J]. Coal Conversion, 2005, 28(1):8-13. |
[8] | 崔银萍, 秦玲丽, 杜娟, 等. 煤热解产物的组成及其影响因素分析[J]. 煤化工, 2007, 35(2):10-15. CUI Y P, QIN L L, DU J, et al. Products distribution and its influencing factors for coal pyrolysis[J]. Coal Chemical Industry, 2007, 35(2):10-15. |
[9] | PERSHING D W, WENDT J O L. Relative contributions of volatile nitrogen and char nitrogen to NOx emissions from pulverized coal flames[J]. Industrial & Engineering Chemistry Process Design & Development, 1979, 18(1):60-67. |
[10] | BASSILAKIS R, ZHAO Y, SOLOMON P R, et al. Sulfur and nitrogen evolution in the Argonne coals. experiment and modelling[J]. Energy & Fuels, 1993, 7(6):710-720. |
[11] | KAMBARA S, TAKARADA T, YAMAMOTO Y, et al. Relation between functional forms of coal nitrogen and formation of nitrogen oxide (NOx) precursors during rapid pyrolysis[J]. Energy & Fuels, 1993, 7(6):1013-1020. |
[12] | SOLOMON P R, COLKET M B. Evolution of fuel nitrogen in coal devolatilization[J]. Fuel, 1978, 57(12):749-755. |
[13] | HAUSSMANN G J, KRUGER C H. Evolution and reaction of coal fuel nitrogen during rapid oxidative pyrolysis and combustion[J]. Symposium on Combustion, 1991, 23(1):1265-1271. |
[14] | MULLINS O C, MITRAKIRTLEY S, ELP J V, et al. Molecular structure of nitrogen in coal from XANES spectroscopy[J]. Applied Spectroscopy, 1993, 47(8):1268-1275. |
[15] | KIRTLEY S M, MULLINS O C, ELP J V, et al. Nitrogen chemical structure in petroleum asphaltene and coal by X-ray absorption spectroscopy[J]. Fuel, 1993, 72(1):133-135. |
[16] | DENG L, JIN X, ZHANG Y, et al. Release of nitrogen oxides during combustion of model coals[J]. Fuel, 2016, 175:217-224. |
[17] | AHO M J, HAMALAINEN J P, TUMMAVUORI J L. Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3, in small particle combustion[J]. Combustion & Flame, 1993, 95(1/2):22-30. |
[18] | HAMALAINEN J P, AHO M J. Effect of fuel composition on the conversion of volatile solid fuel-N to N2O and NO[J]. Fuel, 1995, 74(12):1922-1924. |
[19] | 谢建军, 杨学民, 陈安合, 等. 煤炭解耦燃烧过程N迁移与转化(Ⅱ):单组分气相化学反应实验[J]. 燃料化学学报, 2012, 40(10):1172-1178. XIE J J, YANG X M, CHEN A H, et al. Nitrogen transformation during coal decoulping combustion (Ⅱ):NO and N2O reduction with single component of pyrolysis gas[J]. Journal of Fuel Chemistry and Technology. 2012, 40(10):1172-1178. |
[20] | WU Z, OHTSUKA Y. Nitrogen distribution in a fixed bed pyrolysis of coals with different ranks: formation and source of N2[J]. Energy & Fuels, 1997, 11(2):477-482. |
[21] | KILPINEN P, HUPA M. Homogeneous N2O chemistry at fluidized bed combustion conditions:a kinetic modeling study[J]. Combustion & Flame, 1991, 85(1/2):94-104. |
[22] | KRAMLICH J C, LINAK W P. Nitrous oxide behavior in the atmosphere, and in combustion and industrial systems[J]. Progress in Energy & Combustion Science, 1994, 20(2):149-202. |
[23] | STA?CZYK K. Temperature-time sieve a case of nitrogen in coal[J]. Energy & Fuels, 2004, 18(2):405-409. |
[24] | 何京东. 煤炭解耦燃烧NO抑制机理实验研究[D]. 北京:中国科学院过程工程研究所, 2006. HE J D. The experimental study into the NO inhabitation mechanisms during decoupling combustion of coal[D]. Beijing:Institute of Process Engineering, CAS, 2006. |
[25] | 谢建军. 循环流化床煤炭解耦燃烧过程氮转化规律研究[D]. 北京:中国科学院过程工程研究所, 2007. XIE J J. Investigation into the N conversion mechanisms during decoupling combustion in circulating fluidized bed[D]. Beijing:Institute of Process Engineering, CAS, 2006. |
[26] | 李静海, 郭慕孙, 白蕴茹, 等. 解耦循环流化床燃烧系统及其脱硫与脱硝方法:1203117A[P]. 1997-06-25. LI J H, GUO M S, BAI Y R, et al. Decoupling circulating fluidized-bed combustion system and its desulphurization and deNOx methods:1203117A[P]. 1997-06-25. |
[27] | 尚校, 高士秋, 汪印, 等. 不同煤燃烧方式降低NOx排放比较及解耦燃烧应用[J]. 燃料化学学报, 2012, 40(6):672-679. SHANG X, GAO S Q, WANG Y, et al. Comparison of NOx reduction among different coal combustion methods and the application of decoupling combustion[J]. Journal of Fuel Chemistry and Technology, 2012, 40(6):672-679. |
[28] | FICHET V V, KANNICHE M, PLION P, et al. A reactor network model for predicting NOx emissions in gas turbines[J]. Fuel, 2010, 89(9):2202-2210. |
[29] | HASHEMI H, HANSEN S, TOFTEGAARD M B, et al. A model for nitrogen chemistry in oxy-fuel combustion of pulverized coal[J]. Energy & Fuels, 2014, 25(10):4280-4289. |
[30] | RÜDIGER H, GREUL U, SPLIETHOFF H, et al. Distribution of fuel nitrogen in pyrolysis products used for reburning[J]. Fuel, 1997, 76(76):201-205. |
[31] | LEPPÄLAHTI J, KOLJONEN T. Nitrogen evolution from coal, peat and wood during gasification:literature review[J]. Fuel Processing Technology, 1995, 43(1):1-45. |
[32] | KIDENA K, HIROSE Y, AIBARA T, et al. Analysis of nitrogen-containing species during pyrolysis of coal at two different heating rates[J]. Energy & Fuels, 2008, 14(1):184-189. |
[33] | 赵炜, 常丽萍, 冯志华, 等. 煤热解过程中生成氮化物的研究[J]. 燃料化学学报, 2002, 30(5):408-412. ZHAO W, CHANG L P, FENG Z H, et al. Formation of nitrogenous species during coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2002, 30(5):408-412. |
[34] | 常丽萍, XIE Zongli, 谢克昌, 等. Loy Yang褐煤热解过程中HCN和NH3形成的主要影响因素[J]. 化工学报, 2003, 54(6):863-867. CHANG L P, XIE Z L, XIE K C, et al. Some factors influencing formation of HCN and NH3 during pyrolysis of brown coal[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(6):863-867. |
[35] | 赵炜, 常丽萍, 谢克昌, 等. 煤燃烧过程生成氮氧化物前驱体的研究[J]. 燃料化学学报, 2004, 32(4):385-389. ZHAO W, CHANG L P, XIE K C, et al. Release of NOx precursors during coal combustion[J]. Journal of Fuel Chemistry and Technology, 2004, 32(4):385-389. |
[36] | LEPPÄLAHTI J. Formation of NH3 and HCN in slow-heating-rate inert pyrolysis of peat, coal and bark[J]. Fuel, 1995, 74(9):1363-1368. |
[37] | ZHANG H F, FLETCHER T H. Nitrogen transformations during secondary coal pyrolysis[J]. Energy & Fuels, 2001, 15(6):1512-1522. |
[38] | FRIEBEL J, KÖPSEL R F W. The fate of nitrogen during pyrolysis of German low rank coals-a parameter study[J]. Fuel, 1999, 78(8):923-932. |
[39] | MAN C K, PENDLEBURY K J, GIBBINS J R. Laboratory measurement of N release under combustion conditions and comparison with plant NOx formation[J]. Fuel Processing Technology, 1993, 36(1):117-122. |
[40] | 谢建军, 杨学民, 朱文魁, 等. 煤炭解耦燃烧过程N迁移与转化(Ⅰ):热解阶段煤N的释放规律[J]. 燃料化学学报, 2012, 40(8):919-926. XIE J J, YANG X M, ZHU W K, et al. Nitrogen transformation during coal decoulping combustion (Ⅰ):Release behavior of coal-nitrogen during pyrolysis stage[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8):919-926. |
[41] | GLARBORG P, JENSEN A D, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems[J]. Progress in Energy and Combustion Science, 2003, 29(2):89-113. |
[42] | CHEMKIN. Reaction Design[Z]. San Diego, 2008. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[7] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[8] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[9] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[10] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[11] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[12] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[13] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[14] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[15] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||