[1] |
周昊, 张志中, 鲍强, 等. 添加剂对NOxOUT脱硝及N2O、CO生成的影响特性[J]. 化工学报, 2014, 65(6):2232-2240. ZHOU H, ZHANG Z Z, BAO Q, et al. Influence of additives on NO xOUT denitration and formation of N2O and CO[J]. CIESC Journal, 2014, 65(6):2232-2240.
|
[2] |
第一次全国污染源普查资料编纂委员会. 污染源普查技术报告[M]. 北京:中国环境科学出版社, 2011:125. The Information Compilation Committee of the First National Pollution Census. Pollution Source Census Technical Report[M]. Beijing:China Environmental Science Press, 2011:125.
|
[3] |
卢志民. SNCR反应机理及混合特性研究[D]. 杭州:浙江大学, 2006. LU Z M. Study on reaction mechanism and mixing characteristics of SNCR technique[D]. Hangzhou:Zhejiang University, 2006.
|
[4] |
段传和. 选择性非催化还原法(SNCR)烟气脱硝[M]. 北京:中国电力出版社, 2012:6-12. DUAN C H. Selective Non-Catalytic Reduction (SNCR) of NOx in Flue Gas[M]. Beijing:China Electric Power Press, 2012:6-12.
|
[5] |
沈文锋, 向柏祥, 张海, 等. 煤粉炉SNCR对SO3生成影响的数值模拟[J]. 化工学报, 2017, 68(8):3225-3231. SHEN W F, XIANG B X, ZHANG H, et al. Numerical simulation on formation of SO3 during SNCR process in pulverized coal-fired boiler[J]. CIESC Journal, 2017, 68(8):3225-3231.
|
[6] |
赵玉. 长三角地区钢铁行业烟气污染控制技术评价研究[D]. 杭州:浙江大学, 2017. ZHAO Y. Study on the evaluation of air pollution control technologies for steel industries in Yangtze River Delta[D]. Hangzhou:Zhejiang University, 2017.
|
[7] |
李穹, 吴玉新, 杨海瑞, 等. SNCR脱硝特性的模拟及优化[J]. 化工学报, 2013, 64(5):1789-1796. LI Q, WU Y X, YANG H R, et al. Simulation and optimization of SNCR process[J]. CIESC Journal, 2013, 64(5):1789-1796.
|
[8] |
YAO T, DUAN Y, YANG Z, et al. Experimental characterization of enhanced SNCR process with carbonaceous gas additives[J]. Chemosphere, 2017, 177:149-156.
|
[9] |
顾颜. 煤粉炉SNCR脱硝过程的数值模拟研究[D]. 北京:华北电力大学, 2015. GU Y. Numerical simulation of SNCR process about pulverized coal fired boiler[D]. Beijing:North China Electric Power University, 2015.
|
[10] |
KAMBARA S, HAYAKAWA Y, MASUI M, et al. Removal of nitric oxide by activated ammonia generated by vacuum ultraviolet radiation[J]. Fuel, 2012, 94(1):274-279.
|
[11] |
王鲁元, 程星星, 张兴宇, 等. CeO2纳米棒负载Co催化CO脱除NOx的机理[J]. 化工学报, 2016, 67(s1):260-269. WANG L Y, CHENG X X, ZHANG X Y, et al. Mechanism of nitric oxides reduction by carbon monoxide over cobalt oxides supported by CeO2 nanorod[J]. CIESC Journal, 2016, 67(s1):260-269.
|
[12] |
CHEN H, CHEN D Z, FAN S, et al. SNCR De-NOx within a moderate temperature range using urea-spiked hydrazine hydrate as reductant[J]. Chemosphere, 2016, 161:208-218.
|
[13] |
陈慧, 陈德珍, 王娜. 中温条件下烟气De-NOx技术的研究现状与发展[J]. 中国电机工程学报, 2013, 20:17-27. CHEN H, CHEN D Z, WANG N. The state-of-art and development of moderate-temperature-based flue gas De-NOx technology[J]. Proceedings of the CSEE, 2013, 20:17-27.
|
[14] |
CULLIS C F, WILLSHER J P. The thermal oxidation of methylamine[J]. Proc. R. Soc. London, 1951, 209(1097):218-238.
|
[15] |
EMELÉUS H J, JOLLEY L J. Kinetics of the thermal decomposition of methylamine[J]. J. Am. Chem. Soc., 1935, 2:929-935.
|
[16] |
YOSHIHARA Y, TANAKA T. Reduction of oxides of nitrogen in diesel exhaust with addition of methylamine[J]. Trans. Japan Soc. Mech. Eng., Series B, 1995, 61(582):766-771.
|
[17] |
NAKANISHI Y, YOSHIHARA Y, NISHIWAKI K, et al. Reduction of nitric oxide in diesel exhaust with the addition of methylamine[J]. J. Eng. Gas Turb. Power, 1999, 121(3):563-568.
|
[18] |
DUO W, DAM-JOHANSEN K, ØSTERGAARD K. Widening the temperature range of the thermal De-NOx process. An experimental investigation[J]. Symposium on Combustion, 1991, 23(1):297-303.
|
[19] |
杨杰. 车用柴油机NOx净化过程(SCR、SNCR)的数值模拟[D]. 济南:山东建筑大学, 2010. YANG J. Numerical simulation of exhaust after treatment system(ureaSCR and SNCR) of diesel[D]. Jinan:Shandong Jianzhu University, 2010.
|
[20] |
田海影. 柴油机尾气NOx的净化技术研究[D]. 济南:山东建筑大学, 2011. TIAN H Y. Research on the technology of removing NOx from diesel engine[D]. Jinan:Shandong Jianzhu University, 2011.
|
[21] |
DORKO E A, PCHELKIN N R, WERT J C, et al. Initial shock tube studies of monomethylamine[J]. J. Phys. Chem., 2002, 83(2):297-302.
|
[22] |
KANTAK M V, MANRIQUE K S D, AGLAVE R H, et al. Methylamine oxidation in a flow reactor:mechanism and modeling[J]. Combust. Flame, 1997, 108(3):235-265.
|
[23] |
HJULER K, GLARBORG P, DAMJOHANSEN K. Mutually promoted thermal oxidation of nitric oxide and organic compounds[J]. Ind. Eng. Chem. Res., 1995, 34(5):5802-5806.
|
[24] |
QIN Y. Chemical kinetics analysis of alternative reagents for the SNCR process[D]. Bethlehem:Lehigh University, 2014.
|
[25] |
HWANG S M, HIGASHIHARA T, GARDINER W C, et al. Shock tube and modeling study of monomethylamine oxidation[J]. J. Phys. Chem. A, 1990, 7(7):2883-2889.
|
[26] |
孙桐, 卢平, 蔡杰, 等. Na/K添加剂对SNCR脱硝及NO还原机制的影响[J]. 化工学报, 2017, 68(3):1178-1184. SUN T, LU P, CAI J, et al. Effects of Na/K additives on NO reduction and its promotion mechanism in SNCR process[J]. CIESC Journal, 2017, 68(3):1178-1184.
|
[27] |
KANG Z, YUAN Q, ZHAO L, et al. Study of the performance, simplification and characteristics of SNCR De-NOx in large-scale cyclone separator[J]. Appl. Therm. Eng., 2017, 123:635-645.
|
[28] |
FU S L, QIANG S, QIANG Y. Mechanism study on the adsorption and reactions of NH3, NO, and O2, on the CaO surface in the SNCR DeNO x process[J]. Chem. Eng. J., 2016, 285:137-143.
|
[29] |
KLIPPENSTEIN S J, HARDING L B, GLARBORG P, et al. The role of NNH in NO formation and control[J]. Combust. Flame, 2011, 158(4):774-789.
|
[30] |
FAN W, ZHU T, SUN Y, et al. Effects of gas compositions on NOx reduction by selective non-catalytic reduction with ammonia in a simulated cement precalciner atmosphere[J]. Chemosphere, 2014, 113:182-187.
|