CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 259-275.DOI: 10.11949/0438-1157.20201018
• Reviews and monographs • Previous Articles Next Articles
ZHANG Guping(),WANG Beibei,ZHOU Zhou,CHEN Dongyun(),LU Jianmei()
Received:
2020-07-27
Revised:
2020-11-11
Online:
2021-01-05
Published:
2021-01-05
Contact:
CHEN Dongyun,LU Jianmei
通讯作者:
陈冬赟,路建美
作者简介:
张顾平(1993—),男,博士研究生,基金资助:
CLC Number:
ZHANG Guping, WANG Beibei, ZHOU Zhou, CHEN Dongyun, LU Jianmei. Research progress of semiconductor materials for photocatalytic low concentration nitrogen oxides[J]. CIESC Journal, 2021, 72(1): 259-275.
张顾平, 王贝贝, 周舟, 陈冬赟, 路建美. 半导体材料在光催化低浓度氮氧化物的研究进展[J]. 化工学报, 2021, 72(1): 259-275.
Add to citation manager EndNote|Ris|BibTeX
Fig.8 Photocatalytic activities for NO removal and the inset is the NO2 production rate of the as-prepared samples (a); DFT calculated adsorption energies and bond lengths of the major intermediate adsorption species on g-C3N4 (b) and CNB-0.10 (c), the lengths are given in ?[59]
Fig.10 Visible-light photocatalytic performance of bulk-g-C3N4, HCNS, HCNS/rGO, and CNCF samples for the removal NO (a); multiple runs of photocatalytic reactions for CNCF (b)[66]
Fig.12 Schematic illustration of the fabrication of BOC-MoS2-CNFs (a); visible-light photocatalytic activities of CNFs, BOC, BOC-CNFs and BOC-MoS2-CNFs samples for NO removal (b)[82]
Fig.13 Illustration of the fabrication of the BP/MBWO heterojunction (a); performance of the photocatalysts for NO removal (b); multiple cycles of photocatalytic reactions over 12% BP/MBWO (c)[84]
1 | Wang Z Y, Huang Y, Ho W K, et al. Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: in-situ self-sacrificial synthesis, characterizations and mechanistic study[J]. Applied Catalysis B: Environmental, 2016, 199: 123-133. |
2 | Skalska K, Miller K S, Ledakowicz S, et al. Trends in NOx abatement: a review[J]. Science of the Total Environment, 2010, 408(19): 3976-3989. |
3 | Mills A, Elouali S. The nitric oxide ISO photocatalytic reactor system: measurement of NOx removal activity and capacity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 305: 29-36. |
4 | Todorova N, Giannakopoulou T, Karapati S, et al. Composite TiO2/clays materials for photocatalytic NOx oxidation[J]. Applied Surface Science, 2014, 319: 113-120. |
5 | Pan L Y, Zhou X X, Zhao H, et al. Nanoflower-like Mg-doped MnOx for facile removal of low-concentration NOx at room temperature[J]. Catalysis Communications, 2017, 97: 70-73. |
6 | Lundberg J O, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide[J]. Free Radical Biology and Medicine, 2004, 37(3): 395-400. |
7 | Elzey S, Mubayi A, Larsen S C, et al. FTIR study of the selective catalytic reduction of NO2 with ammonia on nanocrystalline NaY and CuY[J]. Journal of Molecular Catalysis A: Chemical, 2008, 285(1/2): 48-57. |
8 | Olivier J G, Bouwman A F, van der Hoek K W, et al. Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990[J]. Environmental Pollution, 1998, 102(1): 135-148. |
9 | Dong G H, Ho W K, Zhang L Z, et al. Photocatalytic NO removal on BiOI surface: the change from nonselective oxidation to selective oxidation[J]. Applied Catalysis B: Environmental, 2015, 168/169: 490-496. |
10 | Cui W, Li J Y, Dong F, et al. Highly efficient performance and conversion pathway of photocatalytic NO oxidation on SrO-clusters@amorphous carbon nitride[J]. Environmental Scicence & Technology, 2017, 51(18): 10682-10690. |
11 | Ma J Z, Wu H M, Liu Y C, et al. Photocatalytic removal of NOx over visible light responsive oxygen-deficient TiO2[J]. Journal of Physical Chemistry C, 2014, 118(14): 7434-7441. |
12 | Dong F, Wang Z Y, Li Y H, et al. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination[J]. Environmental Science & Technology, 2014, 48(17): 10345-10353. |
13 | Jiang G M, Li X W, Lan M N, et al. Monodisperse bismuth nanoparticles decorated graphitic carbon nitride: enhanced visible-light-response photocatalytic NO removal and reaction pathway[J]. Applied Catalysis B: Environmental, 2017, 205: 532-540. |
14 | Fiore A M, Naik V, Spracklen D V, et al. Global air quality and climate[J]. Chemical Society Reviews, 2012, 41(19): 6663-6683. |
15 | Rodriguez J A, Jirsak T, Liu G, et al. Chemistry of NO2 on oxide surfaces: formation of NO3 on TiO2(110) and NO2↔O vacancy interactions[J]. Journal of the American Chemical Society, 2001, 123(39): 9597-9605. |
16 | Nikokavoura A, Trapalis C. Graphene and g-C3N4 based photocatalysts for NOx removal: a review[J]. Applied Surface Science, 2018, 430: 18-52. |
17 | Xiao B, Wheatley P S, Zhao X B, et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework[J]. Journal of the American Chemical Society, 2007, 129(5): 1203-1209. |
18 | Yang W F, Hsing H J, Yang Y C, et al. The effects of selected parameters on the nitricoxide removal by biofilter[J]. Journal of Hazardous Materials, 2007, 148(3): 653-659. |
19 | Bröer S, Hammer T. Selective catalytic reduction of nitrogen oxides by combining anon-thermal plasma and a V2O5-WO3/TiO2 catalyst[J]. Applied Catalysis B: Environmental, 2000, 28: 101-111. |
20 | Adewuyi Y G, Sakyi N Y. Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature[J]. Industrial and Engineering Chemistry Research, 2013, 52(33): 11702-11711. |
21 | Khan N E, Adewuyi Y G. Absorption and oxidation of nitric oxide (NO) by aqueous solutions of sodium persulfate in a bubble column reactor[J]. Industrial and Engineering Chemistry Research, 2010, 49(18): 8749-8760. |
22 | Heo I, Kim M K, Sung S, et al. Combination of photocatalysis and HC/SCR for improved activity and durability of DeNOx catalysts[J]. Environmental Science & Technology, 2013, 47(8): 3657-3664. |
23 | Guo Q B, Sun T H, Wang Y L, et al. Spray absorption and electrochemical reduction of nitrogen oxides from flue gas[J]. Environmental Science & Technology, 2013, 47(16): 9514-9522. |
24 | Rezaei F, Rownaghi A A, Monjezi S, et al. SOx/NOx removal from flue gas streams by solid adsorbents: a review of current challenges and future directions[J]. Energy and Fuels, 2015, 29(9): 5467-5486. |
25 | Xiong S G, Weng J X, Liao Y, et al. Alkali metal deactivation on the low temperature selective catalytic reduction of NOx with NH3 over MnOx-CeO2: a mechanism study[J]. Journal of Physical Chemistry C, 2016, 120(28): 15299-15309. |
26 | Wang A, Guo Y L, Gao F, et al. Ambient-temperature NO oxidation over amorphous CrOx-ZrO2 mixed oxide catalysts: significant promoting effect of ZrO2[J]. Applied Catalysis B: Environmental, 2017, 202: 706-714. |
27 | Li G, Zhang D, Yu J C,et al. An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide[J]. Environmental Science & Technology, 2010, 44(11): 4276-4281. |
28 | Zhang W, Zhang Q, Dong F, et al. Visible-light photocatalytic removal of NO in air over BiOX (X = Cl, Br, I) single-crystal nanoplates prepared at room temperature[J]. Industrial and Engineering Chemistry Research, 2013, 52(20): 6740-6746. |
29 | Ai Z H, Ho W K, Lee S C, et al. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environmental Science & Technology, 2009, 43(11): 4143-4150. |
30 | Huang Y, Liang Y L, Rao Y F, et al. Environment-friendly carbon quantum dots/ZnFe2O4 photocatalysts: characterization: bio-compatibility and mechanisms for NO removal[J]. Environmental Science & Technology, 2017, 51(5): 2924-2933. |
31 | Jin S, Dong G H, Luo J M, et al. Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst[J]. Applied Catalysis B: Environmental, 2018, 227: 24-34. |
32 | Lu Y F, Huang Y, Zhang Y F, et al. Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: implications of the interfacial charge transfer, NO adsorption and removal[J]. Applied Catalysis B: Environmental, 2018, 231: 357-367. |
33 | Liu D N, Chen D Y, Li N J, et al. Integration of 3D macroscopic graphene aerogel with 0D-2D AgVO3-g-C3N4 heterojunction for highly efficient photocatalytic oxidation of nitric oxide[J]. Applied Catalysis B: Environmental, 2019, 243: 576-584. |
34 | Li X W, Chen D Y, Li N J, et al. One-step synthesis of honeycomb-like carbon nitride isotype heterojunction as low-cost, high-performance photocatalyst for removal of NO[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11063-11070. |
35 | Zhang Q, Huang Y, Peng S Q, et al. Perovskite LaFeO3-SrTiO3 composite for synergistically enhanced NO removal under visible light excitation[J]. Applied Catalysis B: Environmental, 2017, 204: 346-357. |
36 | Zhou Y, Zhao Z Y, Wang F, et al. Facile synthesis of surface N-doped Bi2O2CO3: origin of visible light photocatalytic activity and in situ DRIFTS studies[J]. Journal of Hazardous Materials, 2016, 307: 163-172. |
37 | Liu Y, Yu S, Zhao Z Y, et al. N-doped Bi2O2CO3/graphene quantum dot composite photocatalyst: enhanced visible-light photocatalytic NO oxidation and in situ DRIFTS studies[J]. The Journal of Physical Chemistry C, 2017, 121(22): 12168-12177. |
38 | Zou Q, Li H, Yang Y P, et al. Bi2O3/TiO2 photocatalytic film coated on floated glass balls for efficient removal of organic pollutant[J]. Applied Surface Science, 2019, 467/468: 354-360. |
39 | Low J X, Cheng B, Yu J G, et al. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review[J]. Applied Surface Science, 2017, 392: 658-686. |
40 | Park H, Kim H I, Moon G H, et al. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2[J]. Energy & Environmental Science, 2016, 9(2): 411-433. |
41 | Xu H, Ouyang S X, Liu L Q, et al. Recent advances in TiO2-based photocatalysis[J]. Journal of Materials Chemistry A, 2014, 2(32): 12642-12661. |
42 | Wu Z B, Sheng Z Y, Liu Y, et al. Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase[J]. Journal of Hazardous Materials, 2009, 164: 542-548. |
43 | Zhang D P, Wen M C, Zhang S S, et al. Au nanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation[J]. Applied Catalysis B: Environmental, 2014, 147: 610-616. |
44 | Duan Y Y, Zhang M, Wang L, et al. Plasmonic Ag-TiO2-x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: the role of oxygen vacancies[J]. Applied Catalysis B: Environmental, 2017, 204: 67-77. |
45 | Hipolito E L, Cruz A M, Cuellar E L, et al. Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiation[J]. Materials Chemistry and Physics, 2014, 148(1/2): 208-213. |
46 | Huy T H, Phat B D, Kang F, et al. SnO2/TiO2 nanotube heterojunction: the first investigation of NO degradation by visible light-driven photocatalysis[J]. Chemosphere, 2019, 215: 323-332. |
47 | Xiao S N, Zhang D Q, Pan D L, et al. A chloroplast structured photocatalyst enabled by microwave synthesis[J]. Nature Communications, 2019, 10: 1570. |
48 | Shang H, Li M Q, Li H, et al. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2via simultaneous molecular oxygen activation and photogenerated hole annihilation[J]. Environmental Science & Technology, 2019, 53(11): 6444-6453. |
49 | Ren Y J, Zeng D Q, Ong W J, et al. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review[J]. Chinese Journal of Catalysis, 2019, 40(3): 289-319. |
50 | Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. |
51 | Sun S D, Liang S H. Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers[J]. Nanoscale, 2017, 9(30): 10544-10578. |
52 | 孙丹阳, 翟婷婷, 黎汉生, 等. g-C3N4的改性策略以及g-C3N4/Ti3C2异质结研究进展[J]. 化工学报, 2020, 71: 1-11. |
Sun D Y, Zhai T T, Li H S, et al. Research progress on modification strategy of g-C3N4 and g-C3N4/Ti3C2 heterojunction[J]. CIESC Journal, 2020, 71: 1-11. | |
53 | Ismael M, Wu Y. A mini-review on the synthesis and structural modification of g-C3N4-based materials, and their applications in solar energy conversion and environmental remediation[J]. Sustainable Energy & Fuels, 2019, 3(11): 2907-2925. |
54 | Tian N, Huang H W, Du X, et al. Rational nanostructure design of graphitic carbon nitride for photocatalytic applications[J]. Journal of Materials Chemistry A, 2019, 7(19): 11584-11612. |
55 | Sano T Z, Tsutsui S, Koike K, et al. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase[J]. Journal of Materials Chemistry A, 2013, 1(21): 6489-6496. |
56 | Dong F, Wang Z Y, Sun Y J, et al. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2013, 401: 70-79. |
57 | Luo J M, Dong G H, Zhu Y Q, et al. Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4[J]. Applied Catalysis B: Environmental, 2017, 214: 46-56. |
58 | Xiong T, Cen W L, Zhang Y X, et al. Bridging the g-C3N4 interlayers for enhanced photocatalysis[J]. ACS Catalysis, 2016, 6(4): 2462-2472. |
59 | Li J R, Ran M X, Chen P, et al. Controlling the secondary pollutant on B-doped g-C3N4 during photocatalytic NO removal: a combined DRIFTS and DFT investigation[J]. Catalysis Science & Technology, 2019, 9(17): 4531-4537. |
60 | Liu D N, Chen D Y, Li N J, et al. ZIF-67-derived 3D hollow mesoporous crystalline Co3O4 wrapped by 2D g-C3N4 nanosheets for photocatalytic removal of nitric oxide[J]. Small, 2019, 15(31): 1902291. |
61 | Fu J W, Xu Q L, Low J X, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 243: 556-565. |
62 | He F, Meng, A Y, Cheng B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis, 2020, 41(1): 9-20. |
63 | Xu Q L, Zhang L Y, Cheng B, et al. S-Scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559. |
64 | Xia P F, Cao S W, Zhu B C, et al. Designing a 0D/2D S-Scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angewandte Chemie International Edition, 2020, 59(13): 5218-5225. |
65 | Ren Y Y, Li Y, Wu X Y, et al. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance[J]. Chinese Journal of Catalysis, 2021, 42(1): 69-77. |
66 | Wu H X, Chen D Y, Li N J, et al. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO[J]. Nanoscale, 2016, 8(23): 12066-12072. |
67 | Sun J H, Zhang J S, Zhang M W, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3: 1139. |
68 | Gu Z Y, Zhang B, Asakura Y, et al. Alkali-assisted hydrothermal preparation of g-C3N4/rGO nanocomposites with highly enhanced photocatalytic NOx removal activity[J]. Applied Surface Science, 2020, 521: 146213. |
69 | Zheng Y M, Liu Y Y, Guo X L, et al. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants[J]. Journal of Materials Science & Technology, 2020, 41: 117-126. |
70 | Tang B M, Yang X Y, Gao X J, et al. rGO/g-C3N4 photocatalyst with an enhanced catalytic activity for NO removal[J]. Materials Research Express, 2019, 6: 125509. |
71 | Noda C, Asakura Y, Shiraki K, et al. Synthesis of three-component C3N4/rGO/C-TiO2 photocatalyst with enhanced visible-light responsive photocatalytic deNOx activity[J]. Chemical Engineering Journal, 2020, 390: 124616. |
72 | Hu J D, Chen D Y, Li N J, et al. 3D aerogel of graphitic carbon nitride modified with perylene imide and graphene oxide for highly efficient nitric oxide removal under visible light[J]. Small, 2018, 14(19): 1800416. |
73 | Hu J D, Chen D Y, Li N J, et al. Fabrication of graphitic-C3N4 quantum dots/graphene-InVO4 aerogel hybrids with enhanced photocatalytic NO removal under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2018, 236: 45-52. |
74 | Yuan Y J, Wang P, Li Z J, et al. The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D-2D black phosphorus/MoS2 photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 242: 1-8. |
75 | Li X B, Xiong J, Gao X M, et al. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity[J]. Journal of Hazardous Materials, 2020, 387: 121690. |
76 | Liu F L, Shi R, Wang Z, et al. Direct Z-Scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting[J]. Angewandte Chemie International Edition, 2019, 58(34): 11791-11795. |
77 | Qiu P X, Xu C M, Zhou N, et al. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with CP bonds for excellent photocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2018, 221: 27-35. |
78 | Hu J D, Ji Y G, Mo Z, et al. Engineering black phosphorus to porous g-C3N4-metal-organic framework membrane: a platform for highly boosting photocatalytic performance[J]. Journal of Materials Chemistry A, 2019, 7(9): 4408-4414. |
79 | Sun Y J, Xiong T, Dong F, et al. Interlayer-I-doped BiOIO3 nanoplates with an optimized electronic structure for efficient visible light photocatalysis[J]. Chemical Communications, 2016, 52(53): 8243-8246. |
80 | Wang B B, Chen D Y, Li N J, et al. Z-Scheme photocatalytic NO removal on a 2D/2D iodine doped BiOIO3/g-C3N4 under visible-light irradiation[J]. Journal of Colloid and Interface Science, 2020, 576: 426-434. |
81 | Zhang G P, Sheng H B, Chen D Y, et al. Hierarchical titanium dioxide nanowire/metal–organic framework/carbon nanofiber membranes for highly efficient photocatalytic degradation of hydrogen sulfide[J]. Chemistry-A European Journal, 2018, 24(56): 15019-15025. |
82 | Hu J D, Chen D Y, Li N J, et al. In situ fabrication of Bi2O2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2017, 217: 224-231. |
83 | Zhou Y, Zhang X J, Zhang Q, et al. Role of graphene on the band structure and interfacial interaction of Bi2WO6/graphene composites with enhanced photocatalytic oxidation of NO[J] Journal of Materials Chemistry A, 2014, 2(39): 16623-16631. |
84 | Hu J D, Chen D Y, Mo Z, et al. Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities[J]. Angewandte Chemie International Edition, 2019, 58(7): 2073-2077. |
85 | Huo W C, Dong X A, Li J Y, et al. Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study[J]. Chemical Engineering Journal, 2019, 361: 129-138. |
86 | Liu D N, Chen D Y, Li N J, et al. Surface engineering of g-C3N4 by stacked oxygen vacancies-rich BiOBr sheets for boosting photocatalytic performance[J]. Angewandte Chemie International Edition, 2020, 59(11): 4519-4524. |
[1] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[2] | Guojun XI, Zihan LIU, Guangping LEI. Enhanced adsorption and separation of low concentration coalbed methane based on synergistic effect between FeTPPs and CuBTC [J]. CIESC Journal, 2022, 73(9): 3940-3949. |
[3] | Kun LIU, Yuan YIN, Wenqiang GENG, Haotian XIA. Study on nitrogen fixation performance and mechanism analysis of dielectric barrier discharge under different operating parameters [J]. CIESC Journal, 2022, 73(9): 4045-4053. |
[4] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[5] | DAI Xiaoye, AN Qingsong, XU Yunting, SHI Lin. Review of waste refrigerant destruction methods [J]. CIESC Journal, 2021, 72(S1): 1-6. |
[6] | XIE Qinyin, HUANG Xiaolian, LI Yuan, LI Ling, GE Xuehui, QIU Ting. Design optimization and photocatalytic performance research of TiO2 planar microreactor [J]. CIESC Journal, 2021, 72(7): 3626-3636. |
[7] | Yongqiang DANG,Boni LI,Keke LI,Jianlan ZHANG,Xiangyu FENG,Yating ZHANG. Research progress in photocatalytic reduction of CO2 with iron-based catalysts [J]. CIESC Journal, 2021, 72(10): 5016-5027. |
[8] | REN Jing, TAN Ling, ZHAO Yufei, SONG Yufei. Latest development of ultrathin two-dimensional materials for photocatalytic and electrocatalytic CO2 reduction [J]. CIESC Journal, 2021, 72(1): 398-424. |
[9] | Meng JIA, Jiabin ZHANG, Yaqing FENG, Bao ZHANG. Application of metal-porphyrin-based frameworks in photocatalysis [J]. CIESC Journal, 2020, 71(9): 4046-4057. |
[10] | Qi ZHOU, Honglei DING, Detong GUO, Weiguo PAN, Wei DU. Recent advances in catalytic methods of CO2 hydrogenation to clean energy [J]. CIESC Journal, 2020, 71(8): 3428-3443. |
[11] | Jingyu HU, Rong YAO, Yuhang PAN, Chao ZHU, Shuang SONG, Yi SHEN. Photo-assisted regeneration of titanium dioxide/layered double hydroxide for removal of organic dyes in water [J]. CIESC Journal, 2020, 71(7): 3296-3303. |
[12] | Yunlong ZHOU, Xiaoyuan YE, Dongyao LIN. Photocatalytic hydrogen evolution by using corn stover as sacrificial agent under UV light irradiation [J]. CIESC Journal, 2019, 70(7): 2717-2726. |
[13] | Zishuai WANG,Yaoqiang WANG,Gang XIAO,Haijia SU. Photocatalytic reduction of Cr(Ⅵ) by magnetic nanomaterial Fe3O4@TiO2 under visible light [J]. CIESC Journal, 2019, 70(10): 4062-4071. |
[14] | YANG Ying, QU Donglei, LI Ping, YU Jianguo. Research and development on enrichment of low concentration coal mine methane by adsorption technology [J]. CIESC Journal, 2018, 69(11): 4518-4529. |
[15] | Xiaobing, JIN Can, LI Xiaosong, LIU Jinglin, LIU Chenyang, LIU Xiaoyu. Apparent kinetics of photocatalytic oxidation of formaldehyde over Au/TiO2 under LED visible light [J]. CIESC Journal, 2017, 68(S1): 196-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||