CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 2132-2138.DOI: 10.11949/0438-1157.20200899
• Separation engineering • Previous Articles Next Articles
YOU Yang1(),LIU Yingshu1,YANG Xiong1,WU Xiaoyong1,ZHAO Chunyu1,WANG Zheng1,HOU Huanyu2,LI Ziyi1()
Received:
2020-07-06
Revised:
2020-10-23
Online:
2021-04-05
Published:
2021-04-05
Contact:
LI Ziyi
游洋1(),刘应书1,杨雄1,吴晓永1,赵春雨1,王正1,侯环宇2,李子宜1()
通讯作者:
李子宜
作者简介:
游洋(1995—),男,硕士研究生,基金资助:
CLC Number:
YOU Yang, LIU Yingshu, YANG Xiong, WU Xiaoyong, ZHAO Chunyu, WANG Zheng, HOU Huanyu, LI Ziyi. A new adsorption process for flue gas NOx purification and recovery[J]. CIESC Journal, 2021, 72(4): 2132-2138.
游洋, 刘应书, 杨雄, 吴晓永, 赵春雨, 王正, 侯环宇, 李子宜. 面向烟气NOx净化与回收的新型吸附工艺[J]. 化工学报, 2021, 72(4): 2132-2138.
Add to citation manager EndNote|Ris|BibTeX
位置 | 烟气温度/℃ | RH/% | O2/% | CO2/% | CO/% | NO/ (mg·m-3) | NO2/(mg·m-3) |
---|---|---|---|---|---|---|---|
过滤前 | 126 | — | 13.7 | 5.1 | 0.6 | 376±12 | 48±2 |
脱水前 | 40 | 100 | 13.7 | 5.1 | 0.6 | 376±12 | 40±2 |
脱硝前 | 35 | <1 | 13.5 | ~4.6 | 0.6 | 366±12 | 36±2 |
Table 1 Information about flue gases at different locations of field experiment
位置 | 烟气温度/℃ | RH/% | O2/% | CO2/% | CO/% | NO/ (mg·m-3) | NO2/(mg·m-3) |
---|---|---|---|---|---|---|---|
过滤前 | 126 | — | 13.7 | 5.1 | 0.6 | 376±12 | 48±2 |
脱水前 | 40 | 100 | 13.7 | 5.1 | 0.6 | 376±12 | 40±2 |
脱硝前 | 35 | <1 | 13.5 | ~4.6 | 0.6 | 366±12 | 36±2 |
参数 | 小塔 | 大塔 |
---|---|---|
脱硝塔内径/cm | 3 | 8 |
脱硝塔高度/cm | 26 | 220 |
填装体积Va/L | 0.184 | 11.1 |
吸附剂质量/g | 70 | 5000 |
堆积密度/(kg·m-3) | 381 | 452 |
烟气流量/(L·min-1) | 1 | 65 |
烟气温度/℃ | 308 | 308 |
环境温度/℃ | 298 | 298 |
空速/h-1 | 326.6 | 352.6 |
空塔流速/(m·s-1) | 0.0236 | 0.2156 |
循环流量/(L·min-1) | 0.3 | 20 |
单次循环补充气量/L | 1 | 65 |
循环次数 | 1~3 | 1~3 |
前期吹扫气流量/(L·min-1) | 0.2 | 13 |
前期吹扫时间/min | 10 | 10 |
后期吹扫气流量/(L·min-1) | 0.5 | 35 |
Table 2 Experimental parameters of larger and smaller tower field tests
参数 | 小塔 | 大塔 |
---|---|---|
脱硝塔内径/cm | 3 | 8 |
脱硝塔高度/cm | 26 | 220 |
填装体积Va/L | 0.184 | 11.1 |
吸附剂质量/g | 70 | 5000 |
堆积密度/(kg·m-3) | 381 | 452 |
烟气流量/(L·min-1) | 1 | 65 |
烟气温度/℃ | 308 | 308 |
环境温度/℃ | 298 | 298 |
空速/h-1 | 326.6 | 352.6 |
空塔流速/(m·s-1) | 0.0236 | 0.2156 |
循环流量/(L·min-1) | 0.3 | 20 |
单次循环补充气量/L | 1 | 65 |
循环次数 | 1~3 | 1~3 |
前期吹扫气流量/(L·min-1) | 0.2 | 13 |
前期吹扫时间/min | 10 | 10 |
后期吹扫气流量/(L·min-1) | 0.5 | 35 |
1 | Gholami F, Tomas M, Gholami Z, et al. Technologies for the nitrogen oxides reduction from flue gas: a review[J]. Sci. Total. Environ., 2020, 714: 136712. |
2 | Giampiccolo A, Tobaldi D M, Leonardi S G, et al. Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2[J]. Appl. Catal. B, 2019, 243: 183-194. |
3 | Resitoglu I A, Keskin A. Hydrogen applications in selective catalytic reduction of NOx emissions from diesel engines[J]. Int. J. Hydrogen Energy, 2017, 42(36): 23389-23394. |
4 | Liu J, Luo X, Yao S, et al. Influence of flue gas recirculation on the performance of incinerator-waste heat boiler and NOx emission in a 500 t/d waste-to-energy plant[J]. Waste Manage., 2020, 105: 450-456. |
5 | Yamamoto Y, Yamamoto H, Takada D, et al. Simultaneous removal of NOx and SOx from flue gas of a glass melting furnace using a combined ozone injection and semi-dry chemical process[J]. Ozone-Sci. Eng., 2016, 38(3): 211-218. |
6 | Ren F, Tian X, Ren Y L, et al. Nitrogen dioxide-catalyzed aerobic oxidation of benzyl alcohols under cocatalyst and acid-free conditions[J]. Catal. Commun., 2017, 101: 98-101. |
7 | Nesbitt H, Browne G, Odonovan K, et al. Nitric oxide up-regulates RUNX2 in LNCaP prostate tumours: implications for tumour growth in vitro and in vivo[J]. J. Cell Physiol., 2016, 231(2): 473-482. |
8 | Choi S, Drese J H, Jones C W, et al. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources[J]. ChemSusChem, 2009, 2(9): 796-854. |
9 | Mohapatro S, Rajanikanth B S. Cascaded cross flow DBD-adsorbent technique for NOxabatement in diesel engine exhaust, IEEE Trans[J]. Dielectr. Electr. Insul., 2010, 17: 1543-1550. |
10 | Selleri T, Gramigni F, Nova I, et al. NO oxidation on Fe- and Cu-zeolites mixed with BaO/Al2O3: free oxidation regime and relevance for the NH3-SCR chemistry at low temperature[J]. Appl. Catal. B, 2018, 225: 324-331. |
11 | Breedon M, Spencer M, Miura N. The adsorption of NO on YSZ(111) and oxygen-enriched YSZ(111) surfaces[J]. Chem. Phys. Lett., 2014, 593: 61-68. |
12 | Shirahama N, Moon S H, Choi K, et al. Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers[J]. Carbon, 2002, 40(4): 2605-2611. |
13 | Wang X, Hanson J C, Kwak J H, et al. Cation movements during dehydration and NO2 desorption in a Ba-Y, FAU zeolite: an in situ time-resolved X-ray diffraction study[J]. J. Phys. Chem. C, 2013, 117(8): 3915-3922. |
14 | Li J, Han X, Zhang X, et al. Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework[J]. Nat. Chem., 2019, 11(12): 1085-1090. |
15 | Li Y, Liu W, Yan R, et al. Hierarchical three-dimensionally ordered macroporous Fe-V binary metal oxide catalyst for low temperature selective catalytic reduction of NOxfrom marine diesel engine exhaust[J]. Appl. Catal. B, 2020, 268: 118455. |
16 | Liu H, Zhang Z, Xu Y, et al. Adsorption-oxidation reaction mechanism of NO on Na-ZSM-5 molecular sieves with a high Si/Al ratio at ambient temperature[J]. Chin. J. Catal., 2010, 31(9/10): 1233-1241. |
17 | Liu L, Li Z, Liu S, et al. Effect of exhaust gases of exhaust gas recirculation(EGR) coupling lean-burn gasoline engine on NOx purification of lean NOx trap(LNT) [J]. Mech. Syst. Signal Pr., 2017, 87: 195-213. |
18 | Yoshida K, Rajanikanth B S, Okubo M, et al. NOx reduction and desorption studies under electric discharge plasma using a simulated gas mixture: a case study on the effect of corona electrodes[J]. Plasma Sci. Technol., 2019, 11(3): 327-333. |
19 | Ghouma I, Jeguirim M, Dorge S, et al. Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature[J]. C. R. Chim., 2015, 18(1): 63-74. |
20 | Machida M, Yoshii A, Kijima T. Temperature swing adsorption of NOx over ZrO2-based oxides[J]. Int. J. Inorg. Mater., 2000, 2(5): 413-417. |
21 | Matsuok S, Kodama T, Kumagai M, et al. Development of adsorption process for NOx recycling in a reprocessing plant[J]. J. Nucl. Sci. Technol., 2003, 40(6): 410-416. |
22 | Yoshida K. The effect of NO pre-oxidizing in a temperature-swing-adsorption system for diesel NOx after treatment—mechanisms to enhance its performance[J]. J. Taiwan Inst. Chem. Eng., 2018, 86: 141-147. |
23 | Saleman T L, Li G, Rufford T E, et al. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption[J]. Chem. Eng. J., 2015, 281: 739-748. |
24 | Han Z, Wang D, Jiang P, et al. Enhanced removal and recovery of binary mixture of n-butyl acetate and p-xylene by temperature swing-vacuum pressure swing hybrid adsorption process[J]. Process Saf. Environ. Prot., 2020, 135: 273-281. |
25 | Zhang W, Yahiro H, Mizuno N, et al. Removal of nitrogen monoxide on copper ion-exchanged zeolites by pressure swing adsorption[J]. Langmuir, 1993, 9(9): 2337-2343. |
26 | Zhang Z, John D A, Jiang B, et al. NO oxidation by microporous zeolites: isolating the impact of pore structure to predict NO conversion[J]. Appl. Catal. B, 2015, 163(2): 573-583. |
27 | Lee Y, Park J, Jun S, et al. NOx adsorption-temperature programmed desorption and surface molecular ions distribution by activated carbon with chemical modification[J]. Carbon, 2004, 42(1): 59-69. |
28 | Silas K, Ghani W, Choong T, et al. Carbonaceous materials modified catalysts for simultaneous SO2/NOx removal from flue gas: a review[J]. Catalysis Reviews, 2018, 61(1): 134-161. |
29 | Paolo D. SO2 and NOx adsorption properties of activated carbons obtained from a pitch containing iron derivatives[J]. Carbon, 2001, 39(14): 2173-2179. |
30 | Yu H, Xie Q. Discussion on reducing abrasion loss of active coke in dry-type desulfurization and denitrification technology [J]. Mining Engineering, 2018, 16(2): 37-39. |
31 | Szanyi J, Kwak J, Peden C. The effect of water on the adsorption of NO2 in Na- and Ba-Y, FAU zeolites: a combined FTIR and TPD investigation[J]. J. Phys. Chem. B, 2004, 108: 3746-3753. |
32 | Seredych M, Bashkova S, Pietrzak R, et al. Interactions of NO2 and NO with carbonaceous adsorbents containing silver nanoparticles[J]. Langmuir, 2010, 26(12): 9457-9464. |
33 | Szanyi J, Kwak J H, Moline R A, et al. The adsorption of NO2 and the NO + O2 reaction on Na-Y, FAU: an in situ FTIR investigation[J]. Phys. Chem. Chem. Phys., 2003, 5(18): 4045-4051. |
34 | Delachaux F, Vallières C, Monnier H, et al. Experimental study of NO and NO2 adsorption on a fresh or dried NaY zeolite: influence of the gas composition by breakthrough curves measurements[J]. Adsorption, 2019, 25(1): 95-103. |
35 | Liu L, Jin S, Ko K, et al. Alkyl-functionalization of (3-aminopropyl) triethoxysilane-grafted zeolite beta for carbon dioxide capture in temperature swing adsorption[J]. Chem. Eng. J., 2020, 382: 122834. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[4] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[9] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[10] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[14] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[15] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||