CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 3825-3835.DOI: 10.11949/0438-1157.20190618
• Reviews and monographs • Previous Articles Next Articles
Haijie XUE(),Ying WANG,Chun LI()
Received:
2019-06-04
Revised:
2019-07-13
Online:
2019-10-05
Published:
2019-10-05
Contact:
Chun LI
通讯作者:
李春
作者简介:
薛海洁(1990—),女,博士研究生,基金资助:
CLC Number:
Haijie XUE, Ying WANG, Chun LI. Microbial synthesis and transformation of plant-derived natural products[J]. CIESC Journal, 2019, 70(10): 3825-3835.
薛海洁, 王颖, 李春. 植物天然产物的微生物合成与转化[J]. 化工学报, 2019, 70(10): 3825-3835.
萜类 | 调控优化策略 | 底盘细胞 | 产量 | |
---|---|---|---|---|
单萜 | 芳樟醇 | 过表达tHMG1,结合下调ERG9,成功合成芳樟醇 | 酿酒酵母 | 95 μg/L[ |
柠檬烯 | 过表达异源MVA途径并蛋白质组分析 | 大肠杆菌 | 605 mg/L[ | |
桧烯 | 过表达异源合成途径,优化发酵条件 | 大肠杆菌 | 2.65 g/L[ | |
香叶醇 | 异源表达来源于罗勒的香叶醇合酶,敲除yjgB基因,并整合异源MVA途径 | 大肠杆菌 | 182.5 mg/L[ | |
月桂烯 | 过表达异源MVA途径和GPPS,优化发酵条件 | 大肠杆菌 | 58.19 mg/L[ | |
蒎烯 | 筛选最优组合酶,融合表达,抑制分支途径 | 大肠杆菌 | 32.4 mg/L[ | |
倍半萜 | 异雪松醇 | 异源表达合成酶,过表达tHMG1与upc2-1 | 酿酒酵母 | 0.37 mg/L[ |
青蒿酸 | 改造MVA途径,引入外源合成途径,青蒿酸产量为32 mg/L;整体优化上下游模块,筛选新酶,优化发酵条件,减少分支途径 | 酿酒酵母 | 25 g/L[ | |
α-檀香烯 | MVA途径优化,增加前体和辅因子供应,增加转录因子的活力;葡萄糖诱导ERG9表达,降低分支途径,过表达tHMGR,敲除LPP1 | 酿酒酵母 | 92 mg/L[ | |
椒二醇 | 宿主遗传改造,降低FPP分支途径,过表达合成途径 | 酿酒酵母 | 50 mg/L[ | |
圆柚酮 | 异源表达合成途径 | 酿酒酵母 | Ref.[ | |
紫穗槐-4,11-二烯 | 密码子优化、模块替换、启动子优化、支架设计改造,两相培养,过表达HMGS与HMGR | 大肠杆菌 | 27.4 g/L[ | |
二萜 | 次丹参酮二烯 | 融合表达SmCPS,SmKSL,BST1,FPPS,过表达tHMG1,upc2-1,添加新的GGPP合酶,分批补料 | 酿酒酵母 | 488 mg/L[ |
铁锈醇 | 在次丹参酮二烯合成基础上,引入CYP76AH1 | 酿酒酵母 | 10.5 mg/L[ | |
泪杉醇 | 利用CYP450氧化酶催化多样性,结合基因挖掘、组合表达、蛋白质结构模拟与改造 | 酿酒酵母 | 96 mg/L[ | |
鼠尾草酸 | 解析合成途径,酶分子模拟改造 | 酿酒酵母 | 2.74 mg/L[ | |
紫杉二烯 | 异源表达合成途径,功能模块精确调控,降低产物毒性 | 大肠杆菌 | 1 g/L[ | |
5α羟化紫杉二烯醇 | 模块化优化,酶工程设计改造关键酶 | 大肠杆菌 | 58 mg/L[ | |
氧化紫杉烷 | 平衡CYP450模块表达,酶N端修饰,组学分析,反应器放大 | 大肠杆菌 | 570 mg/L[ | |
左旋海松二烯 | 途径改造与酶定向进化 | 大肠杆菌 | 700 mg/L[ | |
香紫苏醇 | 异源表达合成途径与功能基因筛选 | 大肠杆菌 | 1.5 g/L[ | |
三萜 | 原人参二醇 | 异源表达合成路径,MVA途径优化,提高前体供应,调控代谢途径 | 酿酒酵母 | 15.9 mg/L[ |
人参皂苷 | 基因挖掘,构建异源表达途径 | 酿酒酵母 | 2 g/L[ | |
β-香树脂醇 | 优化MVA途径,提高前体供应,产量达到88.6 mg/L;在此基础上,强化基因表达,优化发酵条件 | 酿酒酵母 | 138.8 mg/L[ | |
3-O-葡萄糖集刺囊酸 | 共表达多个关键基因,利用甲基-β-环糊精使产物分泌到胞外 | 酿酒酵母 | Ref.[ | |
达玛烯二醇 | 重构合成途径 | 大肠杆菌 | 8.6 mg/L[ | |
甘草次酸 | 重构合成途径,匹配CYP450酶于P450还原酶CPR | 酿酒酵母 | 18.9 mg/L[ | |
四萜 | β-胡萝卜素 | 引入外源MVA途径,调控基因表达 | 大肠杆菌 | 2.1 g/L[ |
虾青素 | 筛选并引入不同物种的叶黄素合成途径,加强IPP合成 | 大肠杆菌 | 1.4 mg/g[ | |
番茄红素 | 低拷贝质粒与培养条件优化 | 大肠杆菌 | 260 mg/L[ |
Table 1 Synthesis of terpenoids and precursors by microorganisms
萜类 | 调控优化策略 | 底盘细胞 | 产量 | |
---|---|---|---|---|
单萜 | 芳樟醇 | 过表达tHMG1,结合下调ERG9,成功合成芳樟醇 | 酿酒酵母 | 95 μg/L[ |
柠檬烯 | 过表达异源MVA途径并蛋白质组分析 | 大肠杆菌 | 605 mg/L[ | |
桧烯 | 过表达异源合成途径,优化发酵条件 | 大肠杆菌 | 2.65 g/L[ | |
香叶醇 | 异源表达来源于罗勒的香叶醇合酶,敲除yjgB基因,并整合异源MVA途径 | 大肠杆菌 | 182.5 mg/L[ | |
月桂烯 | 过表达异源MVA途径和GPPS,优化发酵条件 | 大肠杆菌 | 58.19 mg/L[ | |
蒎烯 | 筛选最优组合酶,融合表达,抑制分支途径 | 大肠杆菌 | 32.4 mg/L[ | |
倍半萜 | 异雪松醇 | 异源表达合成酶,过表达tHMG1与upc2-1 | 酿酒酵母 | 0.37 mg/L[ |
青蒿酸 | 改造MVA途径,引入外源合成途径,青蒿酸产量为32 mg/L;整体优化上下游模块,筛选新酶,优化发酵条件,减少分支途径 | 酿酒酵母 | 25 g/L[ | |
α-檀香烯 | MVA途径优化,增加前体和辅因子供应,增加转录因子的活力;葡萄糖诱导ERG9表达,降低分支途径,过表达tHMGR,敲除LPP1 | 酿酒酵母 | 92 mg/L[ | |
椒二醇 | 宿主遗传改造,降低FPP分支途径,过表达合成途径 | 酿酒酵母 | 50 mg/L[ | |
圆柚酮 | 异源表达合成途径 | 酿酒酵母 | Ref.[ | |
紫穗槐-4,11-二烯 | 密码子优化、模块替换、启动子优化、支架设计改造,两相培养,过表达HMGS与HMGR | 大肠杆菌 | 27.4 g/L[ | |
二萜 | 次丹参酮二烯 | 融合表达SmCPS,SmKSL,BST1,FPPS,过表达tHMG1,upc2-1,添加新的GGPP合酶,分批补料 | 酿酒酵母 | 488 mg/L[ |
铁锈醇 | 在次丹参酮二烯合成基础上,引入CYP76AH1 | 酿酒酵母 | 10.5 mg/L[ | |
泪杉醇 | 利用CYP450氧化酶催化多样性,结合基因挖掘、组合表达、蛋白质结构模拟与改造 | 酿酒酵母 | 96 mg/L[ | |
鼠尾草酸 | 解析合成途径,酶分子模拟改造 | 酿酒酵母 | 2.74 mg/L[ | |
紫杉二烯 | 异源表达合成途径,功能模块精确调控,降低产物毒性 | 大肠杆菌 | 1 g/L[ | |
5α羟化紫杉二烯醇 | 模块化优化,酶工程设计改造关键酶 | 大肠杆菌 | 58 mg/L[ | |
氧化紫杉烷 | 平衡CYP450模块表达,酶N端修饰,组学分析,反应器放大 | 大肠杆菌 | 570 mg/L[ | |
左旋海松二烯 | 途径改造与酶定向进化 | 大肠杆菌 | 700 mg/L[ | |
香紫苏醇 | 异源表达合成途径与功能基因筛选 | 大肠杆菌 | 1.5 g/L[ | |
三萜 | 原人参二醇 | 异源表达合成路径,MVA途径优化,提高前体供应,调控代谢途径 | 酿酒酵母 | 15.9 mg/L[ |
人参皂苷 | 基因挖掘,构建异源表达途径 | 酿酒酵母 | 2 g/L[ | |
β-香树脂醇 | 优化MVA途径,提高前体供应,产量达到88.6 mg/L;在此基础上,强化基因表达,优化发酵条件 | 酿酒酵母 | 138.8 mg/L[ | |
3-O-葡萄糖集刺囊酸 | 共表达多个关键基因,利用甲基-β-环糊精使产物分泌到胞外 | 酿酒酵母 | Ref.[ | |
达玛烯二醇 | 重构合成途径 | 大肠杆菌 | 8.6 mg/L[ | |
甘草次酸 | 重构合成途径,匹配CYP450酶于P450还原酶CPR | 酿酒酵母 | 18.9 mg/L[ | |
四萜 | β-胡萝卜素 | 引入外源MVA途径,调控基因表达 | 大肠杆菌 | 2.1 g/L[ |
虾青素 | 筛选并引入不同物种的叶黄素合成途径,加强IPP合成 | 大肠杆菌 | 1.4 mg/g[ | |
番茄红素 | 低拷贝质粒与培养条件优化 | 大肠杆菌 | 260 mg/L[ |
产物 | 前体物质 | 异源基因及来源 | 底盘细胞 | 产量 |
---|---|---|---|---|
柚皮素 | L-酪氨酸 | R.rubra (PAL), S.coelicolor A3 (ScCCL), G.echinata (CHS) | 大肠杆菌 | Ref.[ |
香豆素 | 苯丙氨酸 | P. trichocarpa, P. deltoides (PAL, C4H, CPR) | 酿酒酵母 | Ref.[ |
柚皮素 | 葡萄糖 | R. capsulatus (TAL), A. thaliana (4CL, CHS) | 大肠杆菌 | 20.8 mg/L[ |
松属素 | 苯丙氨酸 | C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 58 mg/L[ |
芹黄素 5,7-二羟黄酮 | L-酪氨酸 苯丙氨酸 | R. rubra (PAL), S. coelicolor (ScCCL), G. echinata (CHS), P. lobata (CHI), P. crispum(FS1), C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 13 g/L[ 9.4 mg/L[ |
山柰酚 | L-酪氨酸 | R. rubra (PAL), S. coelicolor A3(2) (ScCCL), G. echinata (CHS), P. lobata (CHI) | 大肠杆菌 | 15.1 mg/L[ |
姜黄素 | 苯丙氨酸 | Citrus species (F3H, FLS), C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 1.1 mg/L[ |
白藜芦醇 | 苯丙氨酸 | P. deltoides (PAL, CPR), G. max (C4H, 4CL), V. vinifera (RS) | 酿酒酵母 | 0.29 mg/L[ |
山柰酚 槲皮苷 香豆素酸 柚皮素 | 苯丙氨酸 | P. trichocarpa x P. deltoides (PAL, CPR), G. max (C4H, 4CL, CHS, CHI, F3H), S.tuberosum (FLS) | 酿酒酵母 | 1.3 mg/L[ N 0.26 mg/L 0.38 mg/L |
柚皮素 | 葡萄糖 | A. thaliana (4CL3, CHS1, CHI1, C4H and PAL1, CPR CHS3), R. capsulatus (TAL1) | 酿酒酵母 | 112.9 mg/L[ |
圣草素 | 葡萄糖 L-酪氨酸 | R. glutinis (TAL), P. crispum (4CL), P. X hybrida (CHS), M. sativa (CHI), C. glutamicum (accBC, dtsR1), E. coli BL21(DE3) (acs) | 大肠杆菌 | 107 mg/L[ |
4-香豆酸 咖啡酸 阿魏酸 | 葡萄糖 | S. espanaensis (TAL,C3H), A. thaliana (COM) | 大肠杆菌 | 974 mg/L[ 150 mg/L 196 mg/L |
4-O-葡萄糖基白藜芦醇 | 葡萄糖 | S. espanaensis (TAL), A. hypogaea (STS), S. coelicolor A3(2) (ScCCL) | 大肠杆菌 | 7.5 mg/L[ |
樱花素 | 葡萄糖 | S. espanaensis (TAL), O. sativa (4CL), Populus euramericana (CHS), O. sativa (NOMT), E. coli (ppsA, tktA, aroGfbr, tyrAfbr) | 大肠杆菌 | 40.1 mg/L[ |
白藜芦醇 | 香豆酸 | A. thaliana (4CL1), V. vinifera (STS) E. coli (ACC/BirA) (Cerulenin added) | 大肠杆菌 | 2340 mg/L[ |
儿茶酸 | 圣草素 | C. sinensis (F3H), A. andraeanum (FDR), D. uncinatum (DuLAR) | 大肠杆菌 | 910.9 mg/L[ |
白皮杉醇 | 咖啡酸 | A. thaliana (4CL1), A. hypogaea (STS) | 大肠杆菌 | 13.3 mg/L[ |
7-O-甲基香橙素 | 香豆酸 | P. crispum (Pc4Cl-2), P. hybrid (PhCHS), M. sativa (CHI), A. thaliana (F3H), S. avermitilis (OMT), N. farcinica (AccBC, birA, acs) | 大肠杆菌 | 2.7 mg/L[ |
柚皮素 | 香豆酸 | S. coelicolor (CCL), A. thaliana (CHS) | 委内瑞拉链霉菌 | 4 mg/L[ |
柚皮素 花旗松素 | 葡萄糖 葡萄糖 | R. glutinis (TAL), P. crispum (4CL), P. hybrida (CHS), M. sativa (CHI), G. hybrida (F3′H), C. roseus (CPR), Y. lipolytica (ACS2, ACC1) | 耶氏解脂酵母 | 71.2 mg/L[ 48.1 mg/L |
Table 2 Microbial synthesis of flavonoids and their yield
产物 | 前体物质 | 异源基因及来源 | 底盘细胞 | 产量 |
---|---|---|---|---|
柚皮素 | L-酪氨酸 | R.rubra (PAL), S.coelicolor A3 (ScCCL), G.echinata (CHS) | 大肠杆菌 | Ref.[ |
香豆素 | 苯丙氨酸 | P. trichocarpa, P. deltoides (PAL, C4H, CPR) | 酿酒酵母 | Ref.[ |
柚皮素 | 葡萄糖 | R. capsulatus (TAL), A. thaliana (4CL, CHS) | 大肠杆菌 | 20.8 mg/L[ |
松属素 | 苯丙氨酸 | C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 58 mg/L[ |
芹黄素 5,7-二羟黄酮 | L-酪氨酸 苯丙氨酸 | R. rubra (PAL), S. coelicolor (ScCCL), G. echinata (CHS), P. lobata (CHI), P. crispum(FS1), C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 13 g/L[ 9.4 mg/L[ |
山柰酚 | L-酪氨酸 | R. rubra (PAL), S. coelicolor A3(2) (ScCCL), G. echinata (CHS), P. lobata (CHI) | 大肠杆菌 | 15.1 mg/L[ |
姜黄素 | 苯丙氨酸 | Citrus species (F3H, FLS), C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 1.1 mg/L[ |
白藜芦醇 | 苯丙氨酸 | P. deltoides (PAL, CPR), G. max (C4H, 4CL), V. vinifera (RS) | 酿酒酵母 | 0.29 mg/L[ |
山柰酚 槲皮苷 香豆素酸 柚皮素 | 苯丙氨酸 | P. trichocarpa x P. deltoides (PAL, CPR), G. max (C4H, 4CL, CHS, CHI, F3H), S.tuberosum (FLS) | 酿酒酵母 | 1.3 mg/L[ N 0.26 mg/L 0.38 mg/L |
柚皮素 | 葡萄糖 | A. thaliana (4CL3, CHS1, CHI1, C4H and PAL1, CPR CHS3), R. capsulatus (TAL1) | 酿酒酵母 | 112.9 mg/L[ |
圣草素 | 葡萄糖 L-酪氨酸 | R. glutinis (TAL), P. crispum (4CL), P. X hybrida (CHS), M. sativa (CHI), C. glutamicum (accBC, dtsR1), E. coli BL21(DE3) (acs) | 大肠杆菌 | 107 mg/L[ |
4-香豆酸 咖啡酸 阿魏酸 | 葡萄糖 | S. espanaensis (TAL,C3H), A. thaliana (COM) | 大肠杆菌 | 974 mg/L[ 150 mg/L 196 mg/L |
4-O-葡萄糖基白藜芦醇 | 葡萄糖 | S. espanaensis (TAL), A. hypogaea (STS), S. coelicolor A3(2) (ScCCL) | 大肠杆菌 | 7.5 mg/L[ |
樱花素 | 葡萄糖 | S. espanaensis (TAL), O. sativa (4CL), Populus euramericana (CHS), O. sativa (NOMT), E. coli (ppsA, tktA, aroGfbr, tyrAfbr) | 大肠杆菌 | 40.1 mg/L[ |
白藜芦醇 | 香豆酸 | A. thaliana (4CL1), V. vinifera (STS) E. coli (ACC/BirA) (Cerulenin added) | 大肠杆菌 | 2340 mg/L[ |
儿茶酸 | 圣草素 | C. sinensis (F3H), A. andraeanum (FDR), D. uncinatum (DuLAR) | 大肠杆菌 | 910.9 mg/L[ |
白皮杉醇 | 咖啡酸 | A. thaliana (4CL1), A. hypogaea (STS) | 大肠杆菌 | 13.3 mg/L[ |
7-O-甲基香橙素 | 香豆酸 | P. crispum (Pc4Cl-2), P. hybrid (PhCHS), M. sativa (CHI), A. thaliana (F3H), S. avermitilis (OMT), N. farcinica (AccBC, birA, acs) | 大肠杆菌 | 2.7 mg/L[ |
柚皮素 | 香豆酸 | S. coelicolor (CCL), A. thaliana (CHS) | 委内瑞拉链霉菌 | 4 mg/L[ |
柚皮素 花旗松素 | 葡萄糖 葡萄糖 | R. glutinis (TAL), P. crispum (4CL), P. hybrida (CHS), M. sativa (CHI), G. hybrida (F3′H), C. roseus (CPR), Y. lipolytica (ACS2, ACC1) | 耶氏解脂酵母 | 71.2 mg/L[ 48.1 mg/L |
产物 | 前体物质 | 异源基因及来源 | 底盘细胞 | 产量 |
---|---|---|---|---|
小檗碱 | (S)-网状番荔枝碱 | C. japonica (CAS), P. somniferum (MTI, BBE), A. thaliana (ATR1), C. japonica (STOX) | 酿酒酵母 | Ref.[ |
四氢小檗碱 | (S)-网状番荔枝碱 | C. japonica (CAS), P. somniferum (MT1, BBE), A. thaliana (ATR1) | 酿酒酵母 | 1.8 mg/L[ |
木兰花碱 | 多巴胺 | M. luteus (MAO), C. japonica (NCS, 6OMT, CYP80G2, CNMT,4OMT) | 大肠杆菌 酿酒酵母 | 7.2 mg/L[ |
蒂巴因 | 葡萄糖 甘油 | R. solanacearum (TYR), P. putida (DODC), M. luteus (MAO), A. thaliana (ATR2), P. somniferum (SalScut, SalR, SalAT) | 大肠杆菌 | 2.1 mg/L[ |
吗啡 | 蒂巴因 | P. somniferum (T6ODM,COR,CODM) | 酿酒酵母 | 131 mg/L[ |
(S)-网状番荔枝碱 | 甘油 | M. luteus (MAO), P. putida (DODC), R. solanacearum (TYR), C. japonica (NCS,6OMT,CNMT,4OMT) | 大肠杆菌 | 46.0 mg/L[ |
血根碱 | 去甲劳单碱 | A. thaliana (ATR1), E. californica (CFS,STS,P6H), P. somniferum (6OMT,OMT,TNMT) | 酿酒酵母 | 80 μg/L[ |
那可丁 | 去甲劳单碱 四氢小檗碱 | P. somniferum (MT1, MT2, MT3, SDR1, TNMT, CYP82Y1, CYP82X2), C. japonica (CAS), A. thaliana (ATR1) | 酿酒酵母 | 14.8 μmol/L[ |
Table 3 Microbial synthesis of alkaloids
产物 | 前体物质 | 异源基因及来源 | 底盘细胞 | 产量 |
---|---|---|---|---|
小檗碱 | (S)-网状番荔枝碱 | C. japonica (CAS), P. somniferum (MTI, BBE), A. thaliana (ATR1), C. japonica (STOX) | 酿酒酵母 | Ref.[ |
四氢小檗碱 | (S)-网状番荔枝碱 | C. japonica (CAS), P. somniferum (MT1, BBE), A. thaliana (ATR1) | 酿酒酵母 | 1.8 mg/L[ |
木兰花碱 | 多巴胺 | M. luteus (MAO), C. japonica (NCS, 6OMT, CYP80G2, CNMT,4OMT) | 大肠杆菌 酿酒酵母 | 7.2 mg/L[ |
蒂巴因 | 葡萄糖 甘油 | R. solanacearum (TYR), P. putida (DODC), M. luteus (MAO), A. thaliana (ATR2), P. somniferum (SalScut, SalR, SalAT) | 大肠杆菌 | 2.1 mg/L[ |
吗啡 | 蒂巴因 | P. somniferum (T6ODM,COR,CODM) | 酿酒酵母 | 131 mg/L[ |
(S)-网状番荔枝碱 | 甘油 | M. luteus (MAO), P. putida (DODC), R. solanacearum (TYR), C. japonica (NCS,6OMT,CNMT,4OMT) | 大肠杆菌 | 46.0 mg/L[ |
血根碱 | 去甲劳单碱 | A. thaliana (ATR1), E. californica (CFS,STS,P6H), P. somniferum (6OMT,OMT,TNMT) | 酿酒酵母 | 80 μg/L[ |
那可丁 | 去甲劳单碱 四氢小檗碱 | P. somniferum (MT1, MT2, MT3, SDR1, TNMT, CYP82Y1, CYP82X2), C. japonica (CAS), A. thaliana (ATR1) | 酿酒酵母 | 14.8 μmol/L[ |
No. | 基因名称 | 植物来源 | 底物 | 糖基化位点 |
---|---|---|---|---|
1 | UGT71G1 | Medicago truncatula | medicagenic acid UDP- glucose | C-3, 28 [ |
2 | UGT73AD1 | Centella asiatica | asiatic acid, madecassic acid UDP- glucose | C-28[ |
3 | UGT73AE1 | Carthamus tinctorius | glycyrrhetinic acid UDP- glucose | C-3[ |
4 | UGT73AH1 | Centella asiatica | asiatic acid UDP- glucose | C-28 |
5 | UGT73C10 | Barbarea vulgaris | hederagenin, oleanolic acid UDP- glucose | C-3 |
6 | UGT73C11 | Barbarea vulgaris | hederagenin, oleanolic acid, glycyrrhetinic acid UDP- glucose | C-3[ |
7 | UGT73C12 | Barbarea vulgaris | hederagenin, oleanolic acid UDP- glucose | C-3 |
8 | UGT73C13 | Barbarea vulgaris | hederagenin, oleanolic acid UDP-glucose | C-3 |
9 | UGT73F2 | Glycine max | saponin A0-gα UDP-xylose | C-22[ |
10 | UGT73F3 | Medicago truncatula | hederagenin UDP- glucose | C-28[ |
11 | UGT73F4 | Glycine max | saponin A0-gα UDP-xylose | C-22[ |
12 | UGT73K1 | Medicago truncatula | hederagenin, soyasapogenols B and E UDP-glucose | C-3, 28[ |
13 | UGT74AE2 | Panax quinquefolium | protopanaxadiol UDP-glucose | C-3[ |
14 | UGT74M1 | Vaccaria hispanica | gypsogenic acid UDP-glucose | C-28[ |
15 | UGT94Q2 | Panax quinquefolium | ginsenoside Rh2 UDP-glucose | C-3[ |
16 | UGTPg1 | Panax ginseng | protopanaxadiol UDP-glucose | C-3[ |
17 | UGTPg100 | Panax ginseng | ginsenoside RF1, protopanaxatriol UDP-glucose | C-6 |
18 | UGTPg101 | Panax ginseng | ginsenoside RF1, protopanaxatriol UDP-glucose | C-6, 20 |
19 | Pg3-O-UGT1 | Panax quinquefolium | protopanaxadiol UDP-glucose | C-3 |
20 | GmSGT2 | Glycine max | soyasapogenol B monoglucuronide UDP-galactose | C-3[ |
21 | GmSGT3 | Glycine max | soyasaponin Ⅲ UDP-rhamnose | C-3[ |
Table 4 Identified glycosyltransferases and their reaction substrates and glycosylation sites
No. | 基因名称 | 植物来源 | 底物 | 糖基化位点 |
---|---|---|---|---|
1 | UGT71G1 | Medicago truncatula | medicagenic acid UDP- glucose | C-3, 28 [ |
2 | UGT73AD1 | Centella asiatica | asiatic acid, madecassic acid UDP- glucose | C-28[ |
3 | UGT73AE1 | Carthamus tinctorius | glycyrrhetinic acid UDP- glucose | C-3[ |
4 | UGT73AH1 | Centella asiatica | asiatic acid UDP- glucose | C-28 |
5 | UGT73C10 | Barbarea vulgaris | hederagenin, oleanolic acid UDP- glucose | C-3 |
6 | UGT73C11 | Barbarea vulgaris | hederagenin, oleanolic acid, glycyrrhetinic acid UDP- glucose | C-3[ |
7 | UGT73C12 | Barbarea vulgaris | hederagenin, oleanolic acid UDP- glucose | C-3 |
8 | UGT73C13 | Barbarea vulgaris | hederagenin, oleanolic acid UDP-glucose | C-3 |
9 | UGT73F2 | Glycine max | saponin A0-gα UDP-xylose | C-22[ |
10 | UGT73F3 | Medicago truncatula | hederagenin UDP- glucose | C-28[ |
11 | UGT73F4 | Glycine max | saponin A0-gα UDP-xylose | C-22[ |
12 | UGT73K1 | Medicago truncatula | hederagenin, soyasapogenols B and E UDP-glucose | C-3, 28[ |
13 | UGT74AE2 | Panax quinquefolium | protopanaxadiol UDP-glucose | C-3[ |
14 | UGT74M1 | Vaccaria hispanica | gypsogenic acid UDP-glucose | C-28[ |
15 | UGT94Q2 | Panax quinquefolium | ginsenoside Rh2 UDP-glucose | C-3[ |
16 | UGTPg1 | Panax ginseng | protopanaxadiol UDP-glucose | C-3[ |
17 | UGTPg100 | Panax ginseng | ginsenoside RF1, protopanaxatriol UDP-glucose | C-6 |
18 | UGTPg101 | Panax ginseng | ginsenoside RF1, protopanaxatriol UDP-glucose | C-6, 20 |
19 | Pg3-O-UGT1 | Panax quinquefolium | protopanaxadiol UDP-glucose | C-3 |
20 | GmSGT2 | Glycine max | soyasapogenol B monoglucuronide UDP-galactose | C-3[ |
21 | GmSGT3 | Glycine max | soyasaponin Ⅲ UDP-rhamnose | C-3[ |
1 | Williams D H , Stone M J , Hauck P R , et al . Why are secondary metabolites (natural products) biosynthesized?[J]. Journal of Natural Products, 1989, 52(6): 1189-1208. |
2 | Choi Y J , Lee S Y . Microbial production of short-chain alkanes[J]. Nature, 2013, 502(7472): 571-574. |
3 | Heider S A , Peters-Wendisch P , Wendisch V F , et al . Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids[J]. Applied Microbiology and Biotechnology, 2014, 98(10): 4355-4368. |
4 | George K W , Alonso-Gutierrez J , Keasling J D , et al . Isoprenoid drugs, biofuels, and chemicals—artemisinin, farnesene, and beyond[J]. Advances in Biochemical Engineering-Biotechnology, 2015, 148: 355-389. |
5 | Pemberton T A , Chen M , Harris G G , et al . Exploring the influence of domain architecture on the catalytic function of diterpene synthases[J]. Biochemistry, 2017, 56(14): 2010-2023. |
6 | Zhu M , Wang C , Sun W , et al . Boosting 11-oxo-beta-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metabolic Engineering, 2018, 45: 43-50. |
7 | Zhao Y , Fan J , Wang C , et al . Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae [J]. Bioresource Technology, 2018, 257: 339-343. |
8 | Kim K A , Lee J S , Park H J , et al . Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes[J]. Life Sciences, 2004, 74(22): 2769-2779. |
9 | Vanegas K G , Lehka B J , Mortensen U H . SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2017, 16(1): 25. |
10 | Alper H , Miyaoku K , Stephanopoulos G . Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets[J]. Nature Biotechnology, 2005, 23(5): 612-616. |
11 | Chan W K , Tan L T , Chan K G , et al . Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities[J]. Molecules, 2016, 21(5): 529. |
12 | Hu G , Peng C , Xie X , et al . Availability, pharmaceutics, security, pharmacokinetics, and pharmacological activities of patchouli alcohol[J]. Evidence Based Complementary and Alternative Medicine, 2017, 2017: 4850612. |
13 | Biggs B W , Lim C G , Sagliani K , et al . Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli [J]. Proceedings of the National Academy of Sciences, 2016, 113(12): 3209-3214. |
14 | Rico J , Pardo E , Orejas M . Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 2010, 76(19): 6449-6454. |
15 | Amiri P , Shahpiri A , Asadollahi M A , et al . Metabolic engineering of Saccharomyces cerevisiae for linalool production[J]. Biotechnology Letters, 2016, 38(3): 503-508. |
16 | Alonso-Gutierrez J , Chan R , Batth T S , et al . Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production[J]. Metabolic Engineering, 2013, 19: 33-41. |
17 | Alonso-Gutierrez J , Kim E M , Batth T S , et al . Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering[J]. Metabolic Engineering, 2015, 28: 123-133. |
18 | Zhang H , Liu Q , Cao Y , et al . Microbial production of sabinene—a new terpene-based precursor of advanced biofuel[J]. Microbial Cell Factories, 2014, 13(1): 20. |
19 | Zhou J , Wang C , Yoon S H , et al . Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation[J]. Journal of Biotechnology, 2014, 169: 42-50. |
20 | Kim E M , Eom J H , Um Y , et al . Microbial synthesis of myrcene by metabolically engineered Escherichia coli [J]. Journal Agricultural and Food Chemistry, 2015, 63(18): 4606-4612. |
21 | Sarria S , Wong B , Martín H G , et al . Microbial synthesis of pinene[J]. ACS Synthetic Biology, 2014, 3(7): 466-475. |
22 | Jackson B E , Hart-Wells E A , Matsuda S P . Metabolic engineering to produce sesquiterpenes in yeast[J]. Organic Letters, 2003, 5(10): 1629-1632. |
23 | Paddon C J , Westfall P J , Pitera D J , et al . High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532. |
24 | Ro D K , Paradise E M , Ouellet M , et al . Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. |
25 | Scheler U , Brandt W , Porzel A , et al . Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast[J]. Nature Communications, 2016, 7: 12942. |
26 | Takahashi S , Yeo Y , Greenhagen B T , et al . Metabolic engineering of sesquiterpene metabolism in yeast[J]. Biotechnology and Bioengineering, 2007, 97(1): 170-181. |
27 | Cankar K , Van Houwelingen A , Bosch D , et al . A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene[J]. FEBS Letters, 2011, 585(1): 178-182. |
28 | Tsuruta H , Paddon C J , Eng D , et al . High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli [J]. PLoS One, 2009, 4(2): e4489. |
29 | Zhou Y J , Gao W , Rong Q , et al . Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. Journal of the American Chemical Society, 2012, 134(6): 3234-3241. |
30 | Guo J , Zhou Y J , Hillwig M L , et al . CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts[J]. Proceedings of the National Academy of Sciences, 2013, 110(29): 12108-12113. |
31 | Ignea C , Ioannou E , Georgantea P , et al . Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast[J]. Metabolic Engineering, 2015, 28: 91-103. |
32 | Ajikumar P K , Xiao W H , Tyo K E , et al . Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330(6000): 70-74. |
33 | Leonard E , Ajikumar P K , Thayer K , et al . Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control[J]. Proceedings of the National Academy Science United States of America, 2010, 107(31): 13654-13659. |
34 | Schalk M , Pastore L , Mirata M A , et al . Toward a biosynthetic route to sclareol and amber odorants[J]. Journal of the American Chemical Society, 2012, 134(46): 18900-18903. |
35 | Dai Z , Wang B , Liu Y , et al . Producing aglycons of ginsenosides in bakers' yeast[J]. Scientific Reports, 2014, 4: 3698. |
36 | Wang P , Wei Y , Fan Y , et al . Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts[J]. Metabolic Engineering, 2015, 29: 97-105. |
37 | Moses T , Pollier J , Almagro L , et al . Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum [J]. Proceedings of the National Academy of Sciences, 2014, 111(4): 1634-1639. |
38 | Li D , Zhang Q , Zhou Z , et al . Heterologous biosynthesis of triterpenoid dammarenediol-II in engineered Escherichia coli [J]. Biotechnology Letters, 2016, 38(4): 603-609. |
39 | Zhao J , Li Q , Sun T , et al . Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J]. Metabolic Engineering, 2013, 17: 42-50. |
40 | Lemuth K , Steuer K , Albermann C . Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin[J]. Microbial Cell Factories, 2011, 10(1): 29. |
41 | Kim S W , Kim J B , Ryu J M , et al . High-level production of lycopene in metabolically engineered E. coli [J]. Process Biochemistry, 2009, 44(8): 899-905. |
42 | Winkel-Shirley B . Biosynthesis of flavonoids and effects of stress[J]. Current Opinion in Plant Biology, 2002, 5(3): 218-223. |
43 | Treutter D . Significance of flavonoids in plant resistance: a review[J]. Environmental Chemistry Letters, 2006, 4(3): 147-157. |
44 | Heim K E , Tagliaferro A R , Bobilya D J . Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships[J]. The Journal of Nutritional Biochemistry, 2002, 13(10): 572-584. |
45 | Kumar S , Pandey A K . Chemistry and biological activities of flavonoids: an overview[J]. Scientific World Journal, 2013, 2013: 162750. |
46 | Miyahisa I , Kaneko M , Funa N , et al . Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster[J]. Applied Microbiology and Biotechnology, 2005, 68(4): 498-504. |
47 | Wang Y , Chen S , Yu O . Metabolic engineering of flavonoids in plants and microorganisms[J]. Applied Microbiology and Biotechnology, 2011, 91(4): 949-956. |
48 | Hwang E I , Kaneko M , Ohnishi Y , et al . Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster[J]. Applied and Environmental Microbiology, 2003, 69(5): 2699-2706. |
49 | Ro D K , Douglas C J . Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway[J]. The Journal of Biological Chemistry, 2004, 279(4): 2600-2607. |
50 | Watts K T , Lee P C , Schmidt-Dannert C . Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli [J]. Chembiochem, 2004, 5(4): 500-507. |
51 | Miyahisa I , Funa N , Ohnishi Y , et al . Combinatorial biosynthesis of flavones and flavonols in Escherichia coli [J]. Applied Microbiology and Biotechnology, 2006, 71(1): 53-58. |
52 | Trantas E , Panopoulos N , Ververidis F . Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2009, 11(6): 355-366. |
53 | Koopman F , Beekwilder J , Crimi B , et al . De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2012, 11(1): 155. |
54 | Zhu S , Wu J , Du G , et al . Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli [J]. Applied and Environmental Microbiology, 2014, 80(10): 3072-3080. |
55 | Kang S Y , Lee J K , Choi O , et al . Biosynthesis of methylated resveratrol analogs through the construction of an artificial biosynthetic pathway in E. coli [J]. BMC Biotechnology, 2014, 14(1): 67. |
56 | Hong Y S , Ahn J S , Sohng J K , et al . Construction of artificial biosynthetic pathways for resveratrol glucoside derivatives[J]. Journal of Microbiology and Biotechnology, 2014, 24(5): 614-618. |
57 | Kim M J , Kim B G , Ahn J H . Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli [J]. Applied Microbiology and Biotechnology, 2013, 97(16): 7195-7204. |
58 | Lim C G , Fowler Z L , Hueller T , et al . High-yield resveratrol production in engineered Escherichia coli [J]. Applied and Environmental Microbiology, 2011, 77(10): 3451-3460. |
59 | Zhao S , Jones J A , Lachance D M , et al . Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering[J]. Metabolic Engineering, 2015, 28: 43-53. |
60 | Watts K T , Lee P C , Schmidt-Dannert C . Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli [J]. BMC Biotechnology, 2006, 6(1): 22. |
61 | Malla S , Koffas M A , Kazlauskas R J , et al . Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli [J]. Applied and Environmental Microbiology, 2012, 78(3): 684-694. |
62 | Park S R , Yoon J A , Paik J H , et al . Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae [J]. Journal Biotechnology, 2009, 141(3/4): 181-188. |
63 | Lv Y , Edwards H , Zhou J , et al . Combining 26 S rDNA and the Cre-loxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica [J]. ACS Synthetic Biology, 2019, 8(3): 568-576. |
64 | Hussain S A , Panjagari N R , Singh R R , et al . Potential herbs and herbal nutraceuticals: food applications and their interactions with food components[J]. Critical Reviews in Food Science and Nutrition, 2015, 55(1): 94-122. |
65 | Brown S , Clastre M , Courdavault V , et al . De novo production of the plant-derived alkaloid strictosidine in yeast[J]. Proceedings of the National Academy Science United States of America, 2015, 112(11): 3205-3210. |
66 | Galanie S , Thodey K , Trenchard I J , et al . Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349(6252): 1095-1100. |
67 | Dang T T T , Chen X , Facchini P J . Acetylation serves as a protective group in noscapine biosynthesis in opiumpoppy[J]. Nature Chemical Biology, 2015, 11(2): 104. |
68 | Li Y , Smolke C D . Engineering biosynthesis of the anticancer alkaloid noscapine in yeast[J]. Nature Communications, 2016, 7: 12137. |
69 | Urlacher V B , Girhard M . Cytochrome P450 monooxygenases: an update on perspectives for synthetic application[J]. Trends in Biotechnology, 2012, 30(1): 26-36. |
70 | Li Y , Li S , Thodey K , et al . Complete biosynthesis of noscapine and halogenated alkaloids in yeast[J]. Proceedings of the National Academy Science United States of America, 2018, 115(17): E3922-E3931. |
71 | Galanie S , Smolke C D . Optimization of yeast-based production of medicinal protoberberine alkaloids[J]. Microbial Cell Factories, 2015, 14: 144. |
72 | Minami H , Kim J S , Ikezawa N , et al . Microbial production of plant benzylisoquinoline alkaloids[J]. Proceedings of the National Academy of Sciences, 2008, 105(21): 7393-7398. |
73 | Nakagawa A , Matsumura E , Koyanagi T , et al . Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli [J]. Nature Communications, 2016, 7(1):10390. |
74 | Thodey K , Galanie S , Smolke C D . A microbial biomanufacturing platform for natural and semisynthetic opioids[J]. Nature Chemical Biology, 2014, 10(10): 837. |
75 | Nakagawa A , Minami H , Kim J S , et al . A bacterial platform for fermentative production of plant alkaloids[J]. Nature Communications, 2011, 2(1): 326. |
76 | Trenchard I J , Smolke C D . Engineering strategies for the fermentative production of plant alkaloids in yeast[J]. Metabolic Engineering, 2015, 30: 96-104. |
77 | Li Y , Smolke C D . Engineering biosynthesis of the anticancer alkaloid noscapine in yeast[J]. Nature Communications, 2016, 7: 12137. |
78 | Newman D J , Cragg G M . Natural products as sources of new drugs over the last 25 years[J]. Journal of Natural Products, 2007, 70(3): 461-477. |
79 | Choi S H , Kim H S , Yoon Y J , et al . Glycosyltransferase and its application to glycodiversification of natural products[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(4): 1208-1212. |
80 | Zhao Y , Lv B , Feng X , et al . Perspective on biotransformation and de novo biosynthesis of licorice constituents[J]. Journal Agricultural and Food Chemistry, 2017, 65(51): 11147-11156. |
81 | Osbourn A . Saponins and plant defence—a soap story[J]. Trends in Plant Science, 1996, 1(1): 4-9. |
82 | Wei W , Wang P , Wei Y , et al . Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts[J]. Molecular Plant, 2015, 8(9): 1412-1424. |
83 | Liu X , Zhang L , Feng X , et al . Biosynthesis of glycyrrhetinic acid-3-O-monoglucose using glycosyltransferase UGT73C11 from Barbarea vulgaris [J]. Industrial & Engineering Chemistry Research, 2017, 56(51): 14949-14958. |
84 | Achnine L , Huhman D V , Farag M A , et al . Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula [J]. Plant Journal, 2005, 41(6): 875-887. |
85 | De Costa F , Barber C J S , Kim Y B , et al . Molecular cloning of an ester-forming triterpenoid: UDP-glucose 28-O-glucosyltransferase involved in saponin biosynthesis from the medicinal plant Centella asiatica [J]. Plant Science, 2017, 262: 9-17. |
86 | Xie K , Chen R , Li J , et al . Exploring the catalytic promiscuity of a new glycosyltransferase from Carthamus tinctorius [J]. Organic Letters, 2014, 16(18): 4874-4877. |
87 | Sayama T , Ono E , Takagi K , et al . The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean[J]. The Plant Cell, 2012, 24(5): 2123-2138. |
88 | Yan X , Fan Y , Wei W , et al . Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Research, 2014, 24(6): 770-773. |
89 | Wang J , Li J , Li J , et al . Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax quinquefolium adventitious root[J]. Scientific Reports, 2016, 6: 37263. |
90 | Meesapyodsuk D , Balsevich J , Reed D W , et al . Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding beta-amyrin synthase and a triterpene carboxylic acid glucosyltransferase[J]. Plant Physiology, 2007, 143(2): 959-969. |
91 | Jung S C , Kim W , Park S C , et al . Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd[J]. Plant and Cell Physiology, 2014, 55(12): 2177-2188. |
92 | Shibuya M , Nishimura K , Yasuyama N , et al . Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max [J]. FEBS Letters, 2010, 584(11): 2258-2264. |
93 | Bernini R , Crisante F , Ginnasi M C . A convenient and safe O-methylation of flavonoids with dimethyl carbonate (DMC)[J]. Molecules, 2011, 16(2): 1418-1425. |
94 | Walle T . Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass?[J]. Seminars in Cancer Biology, 2007, 17(5): 354-362. |
95 | Shi Y Q , Xin X L , Zhang H C , et al . Microbial transformation of Norkurarinone by Cunninghamella blakesleana AS 3.970[J]. Journal of Asian Natural Products Research, 2012, 14(9): 906-912. |
96 | Carey J S , Laffan D , Thomson C , et al . Analysis of the reactions used for the preparation of drug candidate molecules[J]. Organic & Biomolecular Chemistry, 2006, 4(12): 2337-2347. |
[1] | Lei PENG, Yan JIANG, Ruxin XIA. The mechanism and research progress of bioremediation of Cr(Ⅵ) pollution [J]. CIESC Journal, 2021, 72(9): 4458-4468. |
[2] | Bingzhi FAN, Yixin WANG, Xiaotian LIAN, Weisong XIE, Yang YU, Jianhua LIANG. Structure-activity relationships and mechanisms of triterpenoids against virus [J]. CIESC Journal, 2020, 71(9): 4071-4101. |
[3] | Bo ZHANG, Yiran HE, Yingchun LIU, Qi WANG. Molecular dynamics study of binding of isoquinoline alkaloids to G-quadruplex [J]. CIESC Journal, 2020, 71(1): 344-353. |
[4] | TANG Cunduo, SHI Hongling, HE Zihan, DING Pengju, JIAO Zhujin, KAN Yunchao, YAO Lunguang. Green biosynthesis of phenylglyoxylic acid by biotransformation using recombinant Escherichia coli whole cells [J]. CIESC Journal, 2018, 69(6): 2627-2631. |
[5] | ZHU Ming, WANG Caixia, LI Chun. Engineered Saccharomyces cerevisiae for biosynthesis of plant triterpenoids [J]. CIESC Journal, 2015, 66(9): 3350-3356. |
[6] | ZHAO Yujia, ZHANG Genlin, ZHOU Xiaohong, LI Chun. Intelligent and fine regulation of microbial cell factory based on riboswitches [J]. CIESC Journal, 2015, 66(10): 3811-2819. |
[7] | FU Minjie1,NIE Yao1,MU Xiaoqing1,XU Yan 1,2,XIAO Rong3. A novel isoleucine dioxygenase and its expression in recombinant Escherichia coli for synthesis of 4-hydroxyisoleucine [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 3037-3044. |
[8] | YANG Zhenxing,TAO Zhicheng,HE Yucai,WANG Liqun,ZHANG Yue,XING Zhen,GONG Lei,PAN Xuehe. Selective oxidation resolution of racemic phenyl methyl sulfoxide with Rhodococcus sp. CCZU10-1 [J]. Chemical Industry and Engineering Progree, 2014, 33(10): 2744-2747. |
[9] | XU Zuwei,YU Chaosheng,DOU Shuo. Adsorption characteristics of isoflavones from aqueous solutions by X-5 macroporous resin [J]. Chemical Industry and Engineering Progree, 2013, 32(01): 65-71. |
[10] | HE Nianzhi,ZHANG Xueqin,XIAO Meitian. Progress of heterogeneous asymmetric hydrogenation on chirally modified catalysts [J]. Chemical Industry and Engineering Progree, 2012, 31(12): 2694-2701. |
[11] | CHEN Bingmei, XU Xiaoping, HOU Zhiguo, LI Zhongqin, RUAN Wenbing. Identification and Mutagenesis of a New Isolated Strain Bacillus sp. B26 for Producing(R)-α-Hydroxyphenylacetic Acid [J]. , 2011, 19(4): 636-643. |
[12] |
WANG Taoyun1,2,HU Cuiying2,WANG Jinhu2,YANG Qianqian2,CHEN Peng1.
Optimization of ultrasonic and reflux assisted extraction of isoflavones from soybean hull using response surface methodology [J]. , 2010, 29(3): 537-. |
[13] | SU Guijiao,LIU Xiongmin,ZHU Ping,CHEN Min,MO Qihong. Isolation of trans-anethole degrading bacterial strains and biotransformation of trans-anethole [J]. , 2009, 28(1): 141-. |
[14] | WANG Longyao,WANG Lan. Applications of membrane technology in biotransformation [J]. , 2008, 27(6): 804-. |
[15] | YANG Lei,ZHANG Lin,TIAN Hao,NIU Huiying,ZU Yuangang. Optimization of process parameters of extracting alkaloids from Catharanthus roseus by vacuum cavitation extraction technique [J]. , 2008, 27(11): 1841-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 520
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||