CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4071-4101.DOI: 10.11949/0438-1157.20200495
• Reviews and monographs • Previous Articles Next Articles
Bingzhi FAN(),Yixin WANG(),Xiaotian LIAN,Weisong XIE,Yang YU,Jianhua LIANG()
Received:
2020-05-06
Revised:
2020-08-08
Online:
2020-09-05
Published:
2020-09-05
Contact:
Jianhua LIANG
通讯作者:
梁建华
作者简介:
范炳芝(1995—),女,硕士研究生,基金资助:
CLC Number:
Bingzhi FAN, Yixin WANG, Xiaotian LIAN, Weisong XIE, Yang YU, Jianhua LIANG. Structure-activity relationships and mechanisms of triterpenoids against virus[J]. CIESC Journal, 2020, 71(9): 4071-4101.
范炳芝, 王一鑫, 廉霄甜, 谢维松, 于洋, 梁建华. 三萜类化合物抗病毒的构效关系及其作用机制研究进展[J]. 化工学报, 2020, 71(9): 4071-4101.
Add to citation manager EndNote|Ris|BibTeX
1 | Zhao Y J, Li C. Biosynthesis of plant triterpenoid saponins in microbial cell factories[J]. Journal of Agricultural and Food Chemistry, 2018, 66(46): 12155-12165. |
2 | 肖苏龙, 王晗, 王琪, 等. 基于五环三萜先导结构的抗病毒抑制剂研究进展[J]. 中国科学, 2015, 45(9): 865-883. |
Xiao S L, Wang H, Wang Q, et al. Research progress of antiviral inhibitors based on pentacyclic triterpene lead structures [J]. Science China, 2015, 45 (9): 865-883. | |
3 | Laszczyk M N. Pentacyclic triterpenes of the lupane, oeanane and ursane group as tools in cancer therapy[J]. Planta Medica, 2009, 75(15): 1549-1560. |
4 | Lallemand B, Gelbcke M, Dubois J, et al. Structure-activity relationship analyses of glycyrrhetinic acid derivatives as anticancer agents[J]. Mini Reviews in Medicinal Chemistry, 2011, 11(10): 881-887. |
5 | Pu J Y, He L, Wu S Y, et al. Anti-virus research of triterpenoids in licorice[J]. Chinese Journal of Virology, 2013, 29(6): 673-679. |
6 | Xiao S L, Tian Z Y, Wang Y F, et al. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives[J]. Medicinal Research Reviews, 2018, 38(3): 1-26. |
7 | Nick A, Wright A D, Sticher O, et al. Antibacterial triterpenoid acids from dillenia papuana[J]. Journal of Natural Products, 1994, 57(9): 1245-1250. |
8 | Huang L R, Hao X J, Li Q J, et al. 18β-Glycyrrhetinic acid derivatives possessing a trihydroxylated A ring are potent gram-positive antibacterial agents[J]. Journal of Natural Products, 2016, 79(4): 721-731. |
9 | Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene[J]. Cancer Letters, 2009, 285(2): 109-115. |
10 | Kashyap D, Sharma A, Punia S, et al. Ursolic acid and oleanolic acid: pentacyclic terpenoids with promising anti-inflammatory activities[J]. Recent Patents on Inflammation & Allergy Drug Discovery, 2016, 10(1): 21-33. |
11 | Marciani D J, Press J B, Reynolds R C, et al. Development of semisynthetic triterpenoid saponin derivatives with immune stimulating activity[J]. Vaccine, 2000, 18(27): 3141-3151. |
12 | Clercq E D, Li G D. Approved antiviral drugs over the past 50 years[J]. Clinical Microbiology Reviews, 2016, 29(3): 695-747. |
13 | Nováková L, Pavlík J, Chrenková L, et al. Current antiviral drugs and their analysis in biological materials(Part Ⅰ): Antivirals against respiratory and herpes viruses[J]. Journal of Pharmaceutical & Biomedical Analysis, 2017, 147: 400-416. |
14 | 蒲洁莹, 何莉, 吴思宇, 等. 甘草属植物中三萜类化合物的抗病毒作用研究进展[J]. 病毒学报, 2013, 29(6): 673-679. |
Pu J Y, He L, Wu S Y, et al. Research progress on antiviral effects of triterpenoids in licorice plants [J]. Chinese Journal of Virology, 2013, 29 (6): 673-679. | |
15 | Sarafianos S G, Marchand B, Das K, et al. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition[J]. Journal of Molecular Biology, 2009, 385(3): 693-713. |
16 | Yesufu O T C, Gandhi R T. Update on human immunodeficiency virus (HIV)-2 infection[J]. Clinical Infectious Diseases An Official Publication of the Infectious Diseases Society of America, 2016, 52(6): 780-787. |
17 | Viviana S, David D H, Quarraisha A K. HIV/AIDS epidemiology, pathogenesis, prevention and treatment[J]. Lancet, 2006, 368(9534): 489-504. |
18 | Rezanka T, Siristova L, Sigler K. Sterols and triterpenoids with antiviral activity[J]. Anti-Infective Agents in Medicinal Chemistry, 2009, 8(3): 193-210. |
19 | Jacqueline R, Andrew P. Emerging drug targets for antiretroviral therapy[J]. Drugs, 2005, 65(13): 1747-1766. |
20 | Huang L, Chen C H. Molecular targets of anti-HIV-1 triterpenes[J]. Current Drug Targets - Infectious Disorders, 2002, 2(1): 33-36. |
21 | Baltina L A. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine[J]. Current Medicinal Chemistry, 2003, 10(2): 155-171. |
22 | Song W, Si L L, Ji S, et al. Uralsaponins M-Y, antiviral triterpenoid aaponins from the roots of glycyrrhiza uralensis[J]. Journal of Natural Products, 2014, 77(7): 1632-1643. |
23 | Kondratenko R M, Baltina L A, Mustafina S R, et al. The synthesis and antiviral activity of glycyrrhizic acid conjugates with α - D -glucosamine and some glycosylamines[J]. Russian Journal of Bioorganic Chemistry, 2004, 30(3): 275-282. |
24 | Kong L B, Li S S, Liao Q J, et al. Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity[J]. Antiviral Research, 2013, 98(1): 44-53. |
25 | Kim S, Lee H, Lee S, et al. Antimicrobial action of oleanolic acid on listeria monocytogenes, enterococcus faecium, and enterococcus faecalis[J]. PLoS One, 2015, 10(3): e0118800. |
26 | Li X C, Song Y R, Zhang P, et al. Oleanolic acid inhibits cell survival and proliferation of prostate cancer cells in vitro and in vivo through the PI3K/Akt pathway[J]. Tumor Biology, 2016, 37(6): 7599-7613. |
27 | Rali S, Oyedeji O O, Aremu O O, et al. Semisynthesis of derivatives of oleanolic acid from Syzygium aromaticum and their antinociceptive and anti-inflammatory properties[J]. Mediators of Inflammation, 2016, 2016: 8401843. |
28 | Zhang H J, Lu Z Z, Tan G T, et al. Polyacetyleneginsenoside-Ro, a novel triterpene saponin from Panax ginseng[J]. Tetrahedron Letters, 2002, 43: 973-977. |
29 | Zhu Y M, Shen J K, Wang H K, et al. Synthesis and anti-HIV activity of oleanolic acid derivatives[J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11(24): 3115-3118. |
30 | Yu D L, Sakurai Y, Chen C H, et al. Anti-AIDS agents 69. Moronic acid and other triterpene derivatives as novel potent anti-HIV agents[J]. Journal of Medicinal Chemistry, 2006, 49(18): 5462-5469. |
31 | Kashiwada Y, Wang H K, Nagao T, et al. Anti-AIDS agents 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids[J]. Journal of Natural Products, 1998, 61(9): 1090-1095. |
32 | Xu H X, Zeng F Q, Wan M, et al. Anti-HIV triterpene acids from Geum japonicum[J]. Journal of Natural Products, 1996, 59(7): 643-645. |
33 | Kashiwada Y, Nagao T, Hashimoto A, et al. Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives[J]. Journal of Natural Products, 2001, 63(12): 1619-1622. |
34 | Fujiok T, Kashiwada Y, Kilkuskie R E, et al. Anti-AIDS agents 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids[J]. Journal of Natural Products, 1994, 57(2): 243-247. |
35 | Martin D E, Salzwedel K, Allaway G P. Bevirimat: a novel maturation inhibitor for the treatment of HIV-1 infection[J]. Antiviral Chemistry and Chemotherapy, 2008, 19(3): 107-113. |
36 | Evers M, Poujade C, Soler F, et al. Betulinic acid derivatives: a new class of human immunodeficiency virus type 1 specific inhibitors with a new mode of action[J]. Journal of Medicinal Chemistry, 1996, 39(5): 1056-1068. |
37 | Sun I C, Wang H K, Kashiwada Y, et al. Anti-AIDS agents 34. Synthesis and structure-activity relationships of betulin derivatives as anti-HIV agents[J]. Journal Medicinal Chemistry, 1998, 41(23): 4648-4657. |
38 | Kanamoto T, Kashiwada Y, Kanbara K, et al. Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation[J]. Antimicrob Agents Chemother, 2001, 45(4): 1225-1230. |
39 | Hashimoto F, Kashiwada Y, Cosentino L M, et al. Anti-AIDS agents ⅩⅩⅦ. Synthesis and anti-HIV activity of betulinic acid and dihydrobetulinic acid derivatives[J]. Bioorganic & Medicinal Chemistry, 1997, 5(12): 2133-2143. |
40 | Kashiwada Y, Chiyo J, Ikeshiro Y, et al. 3,28-Di-O-(dimethylsuccnyl)-betulin isomers as anti-HIV agents[J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11(2): 183-185. |
41 | Kashiwada Y, Hashimoto F, Cosentino L M, et al. Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents[J]. Journal Medicinal Chemistry, 1996, 39(5): 1016-1017. |
42 | Mayaux J F, Bousseau A, Pauwels R, et al. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(9): 3564-3568. |
43 | Holz-Smith S L, Sun I C, Jin L, et al. Role of human immunodeficiency virus (HIV) type 1 envelope in the anti-HIV activity of the betulinic acid derivative IC9564[J]. Antimicrobial Agents & Chemotherapy, 2001, 45(1): 60-66. |
44 | Soler F, Poujade C, Evers M, et al. Betulinic acid derivatives: a new class of specific inhibitors of human immunodeficiency virus type 1 entry[J]. Journal of Medicinal Chemistry, 1996, 39(5): 1069-1083. |
45 | Huang L, Zhang L D, Chen C. Potential drug targets on the HIV-1 envelope glycoproteins, gp120 and gp41[J]. Current Pharmaceutical Design, 2003, 9(18): 1453-1462. |
46 | Becker Y. HIV-1 gp41 heptad repeat 2 (HR2) possesses an amino acid domain that resembles the allergen domain in Aspergillusfumigatus Asp f1 protein: review, hypothesis and implications[J]. Virus Genes, 2007, 34(3): 233-240. |
47 | Bianchi E, Finotto M, Ingallinella P, et al. Covalent stabilization of coiled coils of the HIV gp41 N region yields extremely potent and broad inhibitors of viral infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12903–12908. |
48 | Si L L, Meng K, Tian Z Y, et al. Triterpenoids manipulate a broad range of virus-host fusion via wrapping the HR2 domain prevalent in viral envelopes[J]. Science Advances, 2018, 4(11): eaau8408. |
49 | Huang L, Yuan X, Aiken C, et al. Bi-functional anti-HIV-1 small molecules with two novel mechanisms of action[J]. Antimicrobial Agents Chemotherapy, 2004, 48(2): 663-665. |
50 | Qian K D, Yu D L, Chen C H, et al. Anti-AIDS agents 78. Design, synthesis, metabolic stability assessment, and antiviral evaluation of novel betulinic acid derivatives as potent anti-human immunodeficiency virus (HIV) agents[J]. Journal of Medicinal Chemistry, 2009, 52(10): 3248-3258. |
51 | Sun I C, Chen C H, Kashiwada Y, et al. Anti-AIDS agents 49. Synthesis, anti-HIV, and anti-fusion activities of IC9564 analogues based on betulinic acid[J]. Journal Medicinal Chemistry, 2002, 45(19): 4271-4275. |
52 | Ren A R, Liu Z, Chen Y, et al. Discovery of BMS-955176, a second generation HIV-1 maturation inhibitor with broad spectrum antiviral activity[J]. ACS Medicinal Chemistry Letters, 2016, 7(6): 568-572. |
53 | Liu Z, Swidorski J J, Sans B N, et al. C-3 benzoic acid derivatives of C-3 deoxybetulinic acid and deoxybetulin as HIV-1 maturation inhibitors[J]. Bioorganic & Medicinal Chemistry, 2016, 24(8): 1757-1770. |
54 | Swidorski J J, Liu Z, Sit S Y, et al. Inhibitors of HIV-1 maturation: development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids[J]. Bioorganic & Medicinal Chemistry Letters, 2016, 26(8): 1925-1930. |
55 | Chen Y, Sit S Y, Chen J, et al. The design, synthesis and structure-activity relationships associated with C28 amine-based betulinic acid derivatives as inhibitors of HIV-1 maturation[J]. Bioorganic & Medicinal Mhemistry Letters, 2018, 28(9): 1550-1557. |
56 | Ren A R, Swidorski J J, Liu Z, et al. Design, synthesis, and SAR of C-3 benzoic acid, C-17 triterpenoid derivatives. Identification of the HIV-1 maturation inhibitor 4-((1 R,3a S,5a R,5b R,7a R,11a S,11b R,13a R,13b R)-3a-((2-(1,1-dioxidothiomorpholino)ethyl)amino)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-2,3,3a,4,5,5a,5b,6,7,7a,8,11,11a,11b,12,13,13a,13b-octadecahydro-1H-cyclopenta[a]chrysen-9-yl)benzoic acid (GSK3532795, BMS-955176)[J]. Journal of Medicinal Chemistry, 2018, 61(16): 7289-7313. |
57 | Li J Z, Goto M, Yang X M, et al. Fluorinated betulinic acid derivatives and evaluation of their anti-HIV activity[J]. Bioorganic & Medicinal Chemistry Letters, 2016, 26(1): 68-71. |
58 | Gillis E P, Eastman K J, Hill M D, et al. Applications of fluorine in medicinal chemistry[J]. Journal of Medicinal Chemistry, 2015, 58(21): 8315-8359. |
59 | Ma C M, Nakamura N, Hattori M, et al. Inhibitory effects of triterpene-azidothymidine conjugates on proliferation of human immunodeficiency virus type 1 and its protease[J]. Chemical & Pharmaceutical Bulletin, 2002, 50(6): 877-880. |
60 | Pereslavtseva A V, Tolmacheva I A, Slepukhin P A, et al. Synthesis of A-pentacyclic triterpene α,β-alkenenitriles[J]. Chemistry of Natural Compounds, 2014, 49(6): 1059-1066. |
61 | Yu M R, Si L L, Wang Y F, et al. Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses[J]. Journal of Medicinal Chemistry, 2014, 57(23): 10058-10071. |
62 | Bright R A, Medina M J, Xu X Y, et al. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern[J]. Lancet (London, England), 2005, 366(9492): 1175-1181. |
63 | Bouvier N M, Palese P. The biology of influenza viruses[J]. Vaccine, 2008, 26: D49-D53. |
64 | Kim C U, Lew W, Williams M A, et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity[J]. Journal of the American Chemical Society, 1997, 119(4): 681-690. |
65 | Wolkerstorfer A, Kurz H, Bachhofner N, et al. Glycyrrhizin inhibits influenza A virus uptake into the cell[J]. Antiviral Research, 2009, 83(2): 171-178. |
66 | Baltina L A, Zarubaev V V, Baltina L A, et al. Glycyrrhizic acid derivatives as influenza A/H1N1 virus inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(8): 1742-1746. |
67 | Tsuji M, Sriwilaijaroen N, Inoue H, et al. Synthesis and anti-influenza virus evaluation of triterpene-sialic acid conjugates[J]. Bioorganic & Medicinal Chemistry, 2018, 26(1): 17-24. |
68 | Liang S B, Li M, Yu X J, et al. Synthesis and structure-activity relationship studies of water-soluble β-cyclodextrin-glycyrrhetinic acid conjugates as potential anti-influenza virus agents[J]. European Journal of Medicinal Chemistry, 2019, 166: 328-338. |
69 | Yu M R, Si L L, Wang Y F, et al. Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses[J]. Journal of Medicinal Chemistry, 2014, 57(23): 10058-10071. |
70 | Li W J, Yang F, Meng L K, et al. Synthesis, structure activity relationship and anti-influenza A virus evaluation of oleanolic acid-linear amino derivatives[J]. Chemical & Pharmaceutical Bulletin, 2019, 67(11): 1201-1207. |
71 | Su Y Q, Meng L K, Sun J Q, et al. Design, synthesis of oleanolic acid-saccharide conjugates using click chemistry methodology and study of their anti-influenza activity[J]. European Journal of Medicinal Chemistry, 2019, 182: 111622. |
72 | Meng L K, Su Y Q, Yang F, et al. Design, synthesis and biological evaluation of amino acids-oleanolic acid conjugates as influenza virus inhibitors[J]. Bioorganic & Medicinal Chemistry, 2019, 27(23): 115147. |
73 | Li H W, Li M, Xu R Y, et al. Synthesis, structure activity relationship and in vitro anti-influenza virus activity of novel polyphenol-pentacyclic triterpene conjugates[J]. European Journal of Medicinal Chemistry, 2019, 163: 560-568. |
74 | Song G P, Shen X T, Li Y B, et al. 3-O-β-chacotriosyl benzyl ursolate inhibits entry of H5N1 influenza virus into target cells[J]. Journal of Southern Medical University, 2015, 35(6): 789-794. |
75 | Song G P, Shen X T, Li S M, et al. Structure-activity relationships of 3-O-β-chacotriosyl oleanane-type triterpenoids as potential H5N1 entry inhibitors[J]. European Journal of Medicinal Chemistry, 2016, 119: 109-121. |
76 | Li S M, Jia X H, Shen X T, et al. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus[J]. Bioorganic & Medicinal Chemistry, 2017, 25(16): 4384-4396. |
77 | Song G P, Yang S, Zhang W, et al. Discovery of the first series of small molecule H5N1 entry inhibitors[J]. Journal of Medicinal Chemistry, 2009, 52(23): 7368-7371. |
78 | Song G P, Shen X T, Li S M, et al. Structure–activity relationships of 3-O-β-chacotriosyl ursolic acid derivatives as novel H5N1 entry inhibitors[J]. European Journal of Medicinal Chemistry, 2015, 93: 431-442. |
79 | Ding N, Chen Q, Zhang W, et al. Structure-activity relationships of saponin derivatives: a series of entry inhibitors for highly pathogenic H5N1 influenza virus[J]. European Journal of Medicinal Chemistry, 2012, 53: 316-326. |
80 | Tian Z Y, Si L L, Meng K, et al. Inhibition of influenza virus infection by multivalent pentacyclic triterpene-functionalized per-O-methylated cyclodextrin conjugates[J]. European Journal of Medicinal Chemistry, 2017, 134: 133-139. |
81 | Xiao S L, Si L L, Tian Z Y, et al. Pentacyclic triterpenes grafted on CD cores to interfere with influenza virus entry: a dramatic multivalent effect[J]. Biomaterials, 2016, 78: 74-85. |
82 | Hong E H, Song J H, Kang K B, et al. Anti-influenza activity of betulinic acid from Zizyphus jujuba on influenza A/PR/8 virus[J]. Biomolecules & Therapeutics, 2015, 23(4): 345-349. |
83 | Tung N H, Kwon H J, Kim J H, et al. An anti-influenza component of the bark of Alnus japonica[J]. Archives of Pharmacal Research, 2010, 33(3): 363-367. |
84 | Wang H, Xu R Y, Shi Y Y, et al. Design, synthesis and biological evaluation of novel L-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors[J]. European Journal of Medicinal Chemistry, 2016, 110: 376-388. |
85 | Ghosh A K, Kai X, Johnson M E, et al. Progress in anti-SARS coronavirus chemistry, biology and chemotherapy[J]. Annual Reports in Medicinal Chemistry, 2007, 41: 183-196. |
86 | Cinatl J, Morgenstern B, Bauer G, et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus[J]. Lancet, 2003, 361(9374): 2045-2046. |
87 | 曹敏杰, 吴国平, 凌翁, 等. 甘草酸对猪呼吸道冠状病毒的抗病毒作用[J]. 天然产物研究与开发, 2007, 19(2): 221-224. |
Cao M J, Wu G P, Ling W, et al. Antiviral effect of glycyrrhizic acid on swine respiratory coronavirus [J]. Natural Product Research and Development, 2007, 19(2): 221-224. | |
88 | Wu C Y, Jan J T, Ma S H, et al. Small molecules targeting severe acute respiratory syndrome human coronavirus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 10012. |
89 | Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus[J]. Journal of Medicinal Chemistry, 2005, 48(4): 1256-1259. |
90 | Chang F R, Yen C T, Mohamed E S, et al. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia[J]. Natural Product Communications, 2012, 7(11): 1415-1417. |
91 | Ryu Y B, Park S J, Kim Y M, et al. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(6): 1873-1876. |
92 | Lin C M, Wang G M, Jow J M, et al. Functional analysis of hepatitis B virus pre-S deletion variants associated with hepatocellular carcinoma[J]. Journal of Biomedical Science, 2012, 19: 17. |
93 | Li W H. The hepatitis B virus receptor[J]. Annual Review of Cell and Developmental Biology, 2015, 31: 125-147. |
94 | Komatsu H, Inui A, Fujisawa T. Pediatric hepatitis B treatment[J]. Journal of Thoracic Disease, 2017, 5(3): 37. |
95 | Sato H, Goto W, Yamamura J I, et al. Therapeutic basis of glycyrrhizin on chronic hepatitis B[J]. Antiviral Research, 1996, 30(2): 171-177. |
96 | Takahara T, Watanabe A, Shiraki K. Effects of glycyrrhizin on hepatitis B surface antigen: a biochemical and morphological study[J]. Journal of Hepatology, 1994, 21(4): 601-609. |
97 | Huang W, Wang W, Wang P, et al. Glycyrrhetinic acid-functionalized degradable micelles as liver-targeted drug carrier[J]. Journal of Materials Science. Materials in Medicine, 2011, 22(4): 853-863. |
98 | Tian Q, Wang X H, Wang W, et al. Insight into glycyrrhetinic acid: the role of the hydroxyl group on liver targeting[J]. International Journal of Pharmaceutics, 2010, 400(1): 153-157. |
99 | Wang L J, Geng C G, Ma Y B, et al. Synthesis, biological evaluation and structure–activity relationships of glycyrrhetinic acid derivatives as novel anti-hepatitis B virus agents[J]. Bioorganic & Medicinal Chemistry Letters, 2012, 22(10): 3473-3479. |
100 | Yao D C, Li H W, Gou Y L, et al. Betulinic acid-mediated inhibitory effect on hepatitis B virus by suppression of manganese superoxide dismutase expression[J]. The FEBS Journal, 2009, 276(9): 2599-2614. |
101 | Zhao Y L, Cai G M, Hong X, et al. Anti-hepatitis B virus activities of triterpenoid saponin compound from Potentilla anserine L[J]. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 2008, 15(4): 253-258. |
102 | Li Z J, Min Q X, Huang H J, et al. Design, synthesis and biological evaluation of seco-A-pentacyclic triterpenoids-3,4-lactone as potent non-nucleoside HBV inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2018, 28(9): 1501-1506. |
103 | Friebe P, Lohmann V, Krieger N, et al. Sequences in the 5' nontranslated region of hepatitis C virus required for RNA replication[J]. Journal of Virology, 2001, 75(24): 12047-12057. |
104 | Lindenbach B D, Rice C M. Unravelling hepatitis C virus replication from genome to function[J]. Nature, 2005, 436(7053): 933-938. |
105 | Marcellin P, Asselah T, Boyer N. Fibrosis and disease progression in hepatitis C[J]. Hepatology, 2002, 36(5B): s47-s56. |
106 | Manns M P, Mchutchison J G, Mordon S C, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial[J]. The Lancet, 2001, 358(9286): 958-965. |
107 | Ashfaq U A, Masoud M S, Nawaz Z, et al. Glycyrrhizin as antiviral agent against hepatitis C virus[J]. Journal of Translational Medicine, 2011, 9: 112. |
108 | Korenaga M, Hidaka I, Nishina S, et al. A glycyrrhizin-containing preparation reduces hepatic steatosis induced by hepatitis C virus protein and iron in mice[J]. Liver International: Official Journal of the International Association for the Study of the Liver, 2011, 31(4): 552-560. |
109 | Matsumoto Y, Matsuura T, Aoyagi H, et al. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro[J]. PLoS One, 2013, 8(7): e68992. |
110 | Hiasa Y, Kuzuhara H, Tokumoto Y, et al. Hepatitis C virus replication is inhibited by 22β-methoxyolean-12-ene-3β, 24(4β)-diol (ME3738) through enhancing interferon-β[J]. Hepatology, 2008, 48(1): 59-69. |
111 | Hbe H, Imamura M, Hiraga N, et al. ME3738 enhances the effect of interferon and inhibits hepatitis C virus replication both in vitro and in vivo[J]. Journal of Hepatology, 2011, 55(1): 11-18. |
112 | Kong L B, Li S S, Han X, et al. Inhibition of HCV RNA-dependent RNA polymerase activity by aqueous extract from fructus ligustri lucidi[J]. Virus Research, 2007, 128(1): 9-17. |
113 | Ma C M, Wu X H, Masao H, et al. HCV protease inhibitory, cytotoxic and apoptosis-inducing effects of oleanolic acid derivatives[J]. Journal of Pharmacy & Pharmaceutical Sciences: a Publication of the Canadian Society for Pharmaceutical Sciences, Société Canadienne des Sciences Pharmaceutiques, 2009, 12(2): 243-248. |
114 | Yu F, Wang Q, Zhang Z, et al. Development of oleanane-type triterpenes as a new class of HCV entry inhibitors[J]. Journal of Medicinal Chemistry, 2013, 56(11): 4300-4319. |
115 | Wang H, Wang Q, Xiao S L, et al. Elucidation of the pharmacophore of echinocystic acid, a new lead for blocking HCV entry[J]. European Journal of Medicinal Chemistry, 2013, 64: 160-168. |
116 | Wang H, Yu F, Peng Y Y, et al. Synthesis and biological evaluation of ring A and/or C expansion and opening echinocystic acid derivatives for anti-HCV entry inhibitors[J]. European Journal of Medicinal Chemistry, 2015, 102: 594-599. |
117 | Yu F, Peng Y Y, Wang Q, et al. Development of bivalent oleanane-type triterpenes as potent HCV entry inhibitors[J]. European Journal of Medicinal Chemistry, 2014, 77: 258-268. |
118 | Meng L K, Wang Q, Tang T, et al. Design, synthesis and biological evaluation of pentacyclic triterpene dimers as HCV entry inhibitors[J]. Chinese Journal of Chemistry, 2017, 35(8): 1322-1328. |
119 | Xiao S L, Wang Q, Si L L, et al. Synthesis and anti-HCV entry activity studies of β-cyclodextrin-pentacyclic triterpene conjugates[J]. Chemmedchem, 2014, 9(5): 1060-1070. |
120 | Xiao S L, Wang Q, Si L L, et al. Synthesis and biological evaluation of novel pentacyclic triterpene α-cyclodextrin conjugates as HCV entry inhibitors[J]. European Journal of Medicinal Chemistry, 2016, 124: 1-9. |
121 | Zígolo M A, Salinas M, Alché L, et al. Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study[J]. Bioorganic Chemistry, 2018, 78: 210-219. |
122 | Yoneda T, Nakamura S, Ogawa K, et al. Oleanane-type triterpenes with highly-substituted oxygen functional groups from the flower buds of camellia sinensis and their inhibitory effects against NO production and HSV-1[J]. Natural Product Communications, 2018, 13(2): 131-136. |
123 | Alvarez A L, Habtemariam S, Parra F. Inhibitory effects of lupene-derived pentacyclic triterpenoids from Bursera simaruba on HSV-1 and HSV-2 in vitro replication[J]. Natural Product Research, 2015, 29(24): 2322-2327. |
124 | Silva G N S D, Atik D M, Fernandes J L A, et al. Synthesis of three triterpene series and their activity against respiratory syncytial virus[J]. Archiv Der Pharmazie, 2018, 351(8): 1800108. |
125 | Li Y L, Jiang R W, Ooi L S M, et al. Antiviral triterpenoids from the medicinal plant Schefflera heptaphylla[J]. Phytotherapy Research, 2007, 21(5): 466-470. |
126 | Abreu L S, Nascimento Y M D, Costa R D S, et al. Tri- and diterpenoids from Stillingia loranthacea as inhibitors of zika virus replication[J]. Journal of Natural Products, 2019, 82(10): 2721-2730. |
127 | Kazakova O B, Giniyatullina G V, Yamansarov E Y, et al. Betulin and ursolic acid synthetic derivatives as inhibitors of Papilloma virus[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(14): 4088-4090. |
128 | Yim E K, Lee M J, Lee K H, et al. Antiproliferative and antiviral mechanisms of ursolic acid and dexamethasone in cervical carcinoma cell lines[J]. International Journal of Gynecological Cancer: Official Journal of the International Gynecological Cancer Society, 2006, 16(6): 2023-2031. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[5] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[6] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[7] | Zhen LONG, Jinhang WANG, Yong HE, Deqing LIANG. Characteristics study on hydrates formation from gas mixture under ionic liquid together with kinetic hydrate inhibitors [J]. CIESC Journal, 2023, 74(4): 1703-1711. |
[8] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
[9] | Jian JIAN, Jiaming ZHANG, Xiang SHE, Hu ZHOU, Kuiyi YOU, Hean LUO. Correlation with the redox V4+/V5+ ratio in VPO catalysts for oxidation of cyclohexane by NO2 [J]. CIESC Journal, 2023, 74(4): 1570-1577. |
[10] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[11] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[12] | Jiahao JIANG, Xiaole HUANG, Jiyun REN, Zhengrong ZHU, Lei DENG, Defu CHE. Qualitative and quantitative study on Pb2+ adsorption by biochar in solution [J]. CIESC Journal, 2023, 74(2): 830-842. |
[13] | Xuan ZHOU, Mengya LI, Jie SUN, Zhenkai CEN, Qiangsan LYU, Lishan ZHOU, Haitao WANG, Dandan HAN, Junbo GONG. The regulation mechanism of additives on the amino acid crystal growth [J]. CIESC Journal, 2023, 74(2): 500-510. |
[14] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[15] | Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||