CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 141-149.DOI: 10.11949/j.issn.0438-1157.20181369
• Process system engineering • Previous Articles Next Articles
Chenxin CAO1(),Yupeng DU1,Xin WANG2(),Zhenlei WANG1()
Received:
2018-11-18
Revised:
2018-12-25
Online:
2019-03-31
Published:
2019-03-31
Contact:
Xin WANG,Zhenlei WANG
通讯作者:
王昕,王振雷
作者简介:
<named-content content-type="corresp-name">曹晨鑫</named-content>(1994—),男,硕士研究生,<email>296883892@qq.com</email>|王昕(1972—),男,博士,副教授,<email>wangxin26@sjtu.edu.cn</email>|王振雷(1975—),男,博士,教授,<email>wangzhen_1@ecust.edu.cn</email>
基金资助:
CLC Number:
Chenxin CAO, Yupeng DU, Xin WANG, Zhenlei WANG. Networked grading performance assessment method of chemical process based on Ms-LWPLS[J]. CIESC Journal, 2019, 70(S1): 141-149.
曹晨鑫, 杜玉鹏, 王昕, 王振雷. 基于Ms-LWPLS的化工过程网络化性能分级评估方法[J]. 化工学报, 2019, 70(S1): 141-149.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181369
No. | 变量 | 描述 | 单位 |
---|---|---|---|
1 | 裂解原料密度 | kg·m-3 | |
2 | CNP | 正链烷浓度 | % |
3 | CIP | 异构烷烃浓度 | % |
4 | COLE | 烯烃浓度 | % |
5 | CNAP | 环烷烃浓度 | % |
6 | CBTX | 芳烃浓度 | % |
7 | Ffeed | 原料流量 | t·h-1 |
8 | FDS | 稀释蒸汽量 | t·h-1 |
9 | FBfuel | 底部燃料流量 | m3·h-1 |
10 | FSfuel | 侧壁燃料流量 | m3·h-1 |
11 | Co2 | 排烟氧含量 | % |
12 | Tg1 | 排烟温度1 | ℃ |
13 | Tg2 | 排烟温度2 | ℃ |
14 | Fss | 高压蒸汽流量 | kg·h-1 |
15 | Tss | 高压蒸汽温度 | ℃ |
16 | COT | 裂解出口温度 | ℃ |
17 | THK | 初镏点温度 | ℃ |
18 | TKK | 终镏点温度 | ℃ |
Table 1 Ethylene cracking furnace process variables
No. | 变量 | 描述 | 单位 |
---|---|---|---|
1 | 裂解原料密度 | kg·m-3 | |
2 | CNP | 正链烷浓度 | % |
3 | CIP | 异构烷烃浓度 | % |
4 | COLE | 烯烃浓度 | % |
5 | CNAP | 环烷烃浓度 | % |
6 | CBTX | 芳烃浓度 | % |
7 | Ffeed | 原料流量 | t·h-1 |
8 | FDS | 稀释蒸汽量 | t·h-1 |
9 | FBfuel | 底部燃料流量 | m3·h-1 |
10 | FSfuel | 侧壁燃料流量 | m3·h-1 |
11 | Co2 | 排烟氧含量 | % |
12 | Tg1 | 排烟温度1 | ℃ |
13 | Tg2 | 排烟温度2 | ℃ |
14 | Fss | 高压蒸汽流量 | kg·h-1 |
15 | Tss | 高压蒸汽温度 | ℃ |
16 | COT | 裂解出口温度 | ℃ |
17 | THK | 初镏点温度 | ℃ |
18 | TKK | 终镏点温度 | ℃ |
性能等级 | 实际情况 | PLS-NN | Ms-LWPLS-NN |
---|---|---|---|
最优 | 1—442 | 1—100 133—454 | 1—451 |
过渡 | 443—486 | 455—493 | 452—492 |
一般 | 487—994 | 494—1023 | 493—1026 |
过渡 | 995—1033 | 1023—1038 | 1027—1045 |
较差 | 1034—1250 | 1039—1101 1122—1250 | 1046—1250 |
过渡 | — | 101—132 1102—1121 | — |
准确率 | — | 90.73% | 94.18% |
Table 2 Comparison of online assessment result and actual condition
性能等级 | 实际情况 | PLS-NN | Ms-LWPLS-NN |
---|---|---|---|
最优 | 1—442 | 1—100 133—454 | 1—451 |
过渡 | 443—486 | 455—493 | 452—492 |
一般 | 487—994 | 494—1023 | 493—1026 |
过渡 | 995—1033 | 1023—1038 | 1027—1045 |
较差 | 1034—1250 | 1039—1101 1122—1250 | 1046—1250 |
过渡 | — | 101—132 1102—1121 | — |
准确率 | — | 90.73% | 94.18% |
1 | HarrisT J. Assessment of control loop performance [J]. Canadian Journal of Chemical Engineering, 1989, 67(5): 856-861. |
2 | HarrisT J, BoudreauF, MacgregorJ F. Performance assessment of multivariable feedback controllers [J]. Automatica, 1996, 32(11): 1505-1518. |
3 | HuangB, KwokE K, ShahS L. Good, bad or optimal? Performance assessment of multivariable processes [J]. Automatica, 1997, 33(6): 1175-1183. |
4 | HuangB, ShahS L. Practical issues in multivariable feedback control performance assessment [J]. Journal of Process Control, 1997, 8(5): 421-430. |
5 | HuangB, DingS X, ThornhillN. Practical solutions to multivariate feedback control performance assessment problem: reduced a-priori knowledge of interactor matrix [J]. Journal of Process Control, 2005, 15(5): 573-583. |
6 | HuangB, DingS X, ThornhillN. Alternative solutions to multi-variate control performance assessment problems [J]. Journal of Process Control, 2006, 16(5): 457-471. |
7 | YuJ, QinS J. Statistical MIMO controller performance monitoring(Ⅰ): Data-driven covariance benchmark [J]. Journal of Process Control, 2008, 18(3): 277-296. |
8 | YuJ, QinS J. Statistical MIMO controller performance monitoring(Ⅱ): Performance diagnosis [J]. Journal of Process Control, 2008, 18(3): 297-319. |
9 | QinS J. Survey on data-driven industrial process monitoring and diagnosis [J]. Annual Reviews in Control, 2012, 36(2): 220-234. |
10 | 赵春晖, 王福利, 姚远, 等. 基于时段的间歇过程统计建模、在线监测及质量预报[J]. 自动化学报, 2010, 36(3): 366-374. |
ZhaoC H, WangF L, YaoY, et al. Phase-based statistical modeling, online monitoring and quality prediction for batch processes [J]. Acta Automatica Sinica, 2010, 36(3): 366-374. | |
11 | YanL, WangF, ChangY. Online fuzzy assessment of operating performance and cause identification of nonoptimal grades for industrial processes [J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 18022-18030. |
12 | LiuY, ChangY, WangF. Online process operating performance assessment and nonoptimal cause identification for industrial processes [J]. Journal of Process Control, 2014, 24(10): 1548-1555. |
13 | LiuY, WangF, ChangY. Operating optimality assessment based on optimality related variations and nonoptimal cause identification for industrial processes[J]. Journal of Process Control, 2016, 39: 11-20. |
14 | ZhaoC, GaoF, NiuD, et al. A two-step basis vector extraction strategy for multiset variable correlation analysis [J]. Chemometrics & Intelligent Laboratory Systems, 2011, 107(1): 147-154. |
15 | LiuY, ChangY, WangF. Online process operating performance assessment and nonoptimal cause identification for industrial processes [J]. Journal of Process Control, 2014, 24(10): 1548-1555. |
16 | LiG, QinS J, ZhouD. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46(1): 204-210. |
17 | ZhouD H, LiG, QinS J. Total projection to latent structures for process monitoring [J]. AIChE Journal, 2010, 56(1): 168-178. |
18 | 赵小强, 薛永飞. 基于核 T-PLS 的化工过程故障检测算法[J]. 化工学报, 2013, 64(12): 4608-4614. |
ZhaoX Q, XueY F. Fault detection algorithm for chemical process based on kernel T-PLS[J]. CIESC Journal, 2013, 64(12): 4608-4614. | |
19 | LiuY, ChangY, WangF. Nonlinear dynamic quality-related process monitoring based on dynamic total kernel PLS [C]//Intelligent Control and Automation. IEEE, 2015: 1360-1365. |
20 | KanekoH, FunatsuK. Ensemble locally weighted partial least squares as a just-in-time modeling method [J]. AIChE Journal, 2016, 62(3): 717-725. |
21 | HazamaK, KanoM. Covariance-based locally weighted partial least squares for high-performance adaptive modeling [J]. Chemometrics & Intelligent Laboratory Systems, 2015, 146: 55-62. |
22 | 袁小锋, 葛志强, 宋执环. 基于时间差分和局部加权偏最小二乘算法的过程自适应软测量建模[J]. 化工学报, 2016, 67(3): 724-728. |
YuanX F, GeZ Q, SongZ H. Adaptive soft sensor based on time difference model and locally weighted partial least squares regression [J]. CIESC Journal, 2016, 67(3): 724-728. | |
23 | WangG, YinS, KaynakO. An LWPR-based data-driven fault detection approach for nonlinear process monitoring [J]. IEEE Transactions on Industrial Informatics, 2014, 10(4): 2016-2023. |
24 | YinS, XieX, SunW. A nonlinear process monitoring approach with locally weighted learning of available data [J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1507-1516. |
25 | UchimaruT, KanoM. Sparse sample regression based just-in-time modeling (SSR-JIT): beyond locally weighted approach [J]. IFAC Papers OnLine, 2016, 49(7): 502-507. |
26 | LiuJ, TaoL, JieZ. Window-based step-wise sequential phase partition for nonlinear batch process monitoring [J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9229-9243. |
27 | 刘学彦, 王昕, 王振雷. 带遗忘因子的线性回归性能评估算法及应用[J]. 控制工程, 2014, 21(6): 867-872. |
LiuX Y, WangX, WangZ L. Performance assessment algorithm of improved linear regression with forgetting factor (ILR) and its application [J]. Control Engineering of China, 2014, 21(6): 867-872. | |
28 | 张壤文, 田学民. 带变遗忘因子的自适应子空间预测控制器设计[J]. 化工学报, 2016, 67(3): 858-864. |
ZhangR W, TianX M. Design of adaptive subspace predictive controller with variable forgetting factor [J]. CIESC Journal, 2016, 67(3): 858-864. | |
29 | KerezsiJ. Computer simulation of an industrial ethane-cracking furnace operation [C]//International Youth Conference on Energy. IEEE, 2013: 1-5. |
30 | 李平, 李奇安. 乙烯裂解炉先进控制系统开发与应用 [J]. 化工学报, 2011, 62(8): 2216-2220. |
LiP, LiQ A. Development and application of advanced process control system for ethylene cracking heaters [J]. CIESC Journal, 2011, 62(8): 2216-2220. | |
31 | 江伟, 王昕, 王振雷. 基于 LTSA 和 MICA 与 PCA 联合指标的过程监控方法及应用[J]. 化工学报, 2015, 66(12): 4895-4903. |
JiangW, WangX, WangZ L. LTSA and combined index based MICA and PCA process monitoring and application [J]. CIESC Journal, 2015, 66(12): 4895-4903. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[3] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[4] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[7] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[8] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[11] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[12] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[13] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[14] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[15] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||