CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3527-3534.DOI: 10.11949/0438-1157.20191454

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Research on experimental measurement of spray parameters of nozzle by using trajectory imaging method

Zhixiong SHI1(),Kewei PAN2,Li PING1,Bin YANG1()   

  1. 1.School of Energy and Power Engineering/Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2.Shanghai Space Propulsion Technology Research Institute, Shanghai 201109, China
  • Received:2019-11-29 Revised:2020-05-22 Online:2020-08-05 Published:2020-08-05
  • Contact: Bin YANG

喷嘴雾化参数轨迹图像法测量实验研究

施智雄1(),潘科玮2,平力1,杨斌1()   

  1. 1.上海理工大学能源与动力工程学院/上海市动力工程多相流动与传热重点实验室,上海 200093
    2.上海航天动力技术研究所,上海 201109
  • 通讯作者: 杨斌
  • 作者简介:施智雄(1995—),男,硕士研究生,724844862@qq.com
  • 基金资助:
    国家重点研发计划项目(2016YFB0600601);国家自然科学基金项目(51806144);上海市自然科学基金项目(19ZR1454500)

Abstract:

Aiming at the problem of simultaneous measurement of nozzle atomization multi-parameters, a method for measuring nozzle atomization angle, atomization fineness, droplet movement speed and distribution parameters based on image processing is proposed. The measurement system using backlight shadow imaging method, and the process and algorithm based on trajectory imaging method were established. The measurement accuracy of trajectory imaging method was validated by using standard particle measurement. The experimental synchronous measurements of spray parameters of fan-type nozzle with the different apertures on the different atomization pressure were carried out. The results show that, when the atomization pressure remains unchanged, atomization fineness and average velocity of the droplets increase by 26.82% and 10.42%, respectively, and the atomization angle decreases by 16.66% with the aperture of the fan-type nozzle changes from 0.66 mm to 1.10 mm. When the aperture remains unchanged, the atomization angle and the average velocity of the droplets increase by 47.71% and 95.10%, respectively, and the atomization fineness decreases by 44.23% with the atomization pressure increases from 0.1 MPa to 0.4 MPa. It provides an effective tool for the study of atomization droplet characteristics and the evaluation of nozzle performance.

Key words: spray measurement method, trajectory imaging method, atomization angle, atomization fineness, droplet velocity

摘要:

针对喷嘴雾化多参数同步测量问题,提出了基于图像处理的喷嘴雾化角、雾化细度、液滴运动速度及分布参数测量方法,利用背光阴影成像技术搭建了喷嘴雾化参数测量系统,建立了基于轨迹图像法原理的喷嘴雾化参数图像处理流程与算法,利用标准颗粒测量验证了该方法对颗粒粒径测量的精度,并开展了不同孔径与压力下扇形喷嘴雾化参数同步测量实验研究。结果表明:当雾化压力不变,扇形喷嘴孔径从0.66 mm变为1.10 mm时,雾化细度与液滴平均运动速度分别增加26.82%、10.42%,而雾化角随扇形喷嘴孔径增大而减小16.66%;当扇形喷嘴孔径不变,雾化压力从0.1 MPa增加到0.4 MPa时,雾化角与液滴平均运动速度分别增加47.71%、95.10%,而雾化细度随雾化压力增加而减小44.23%。这为雾化液滴特性研究与喷嘴性能评估提供了有效手段。

关键词: 喷雾测量方法, 轨迹图像法, 雾化角, 雾化细度, 液滴速度

CLC Number: