CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3535-3544.DOI: 10.11949/0438-1157.20200175
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zuodong LIU(),Siqi LI(),Weiwei XING,Zhiming XU
Received:
2020-02-24
Revised:
2020-05-12
Online:
2020-08-05
Published:
2020-08-05
Contact:
Siqi LI
通讯作者:
李斯琪
作者简介:
刘坐东(1985—),男,博士,讲师,基金资助:
CLC Number:
Zuodong LIU, Siqi LI, Weiwei XING, Zhiming XU. Characteristics of microbial fouling on Ni-P- (nano) TiO2 composite coating of plate heat exchanger[J]. CIESC Journal, 2020, 71(8): 3535-3544.
刘坐东, 李斯琪, 邢维维, 徐志明. 板式换热器Ni-P-TiO2复合纳米镀层微生物污垢特性[J]. 化工学报, 2020, 71(8): 3535-3544.
Add to citation manager EndNote|Ris|BibTeX
材料 | 板片尺寸/mm | 波纹 形式 | 波纹深度/mm | 当量直径/mm | 单流道截面积/ m2 | 角孔直径/ mm | 板片厚度/mm | 换热面积/m2 | 波纹夹角/(°) |
---|---|---|---|---|---|---|---|---|---|
316不锈钢 | 258×100 | 人字形 | 2 | 4 | 0.000167 | φ20 | 0.6 | 0.15 | 120 |
Table 1 Dimension parameters of the test plate heat exchanger
材料 | 板片尺寸/mm | 波纹 形式 | 波纹深度/mm | 当量直径/mm | 单流道截面积/ m2 | 角孔直径/ mm | 板片厚度/mm | 换热面积/m2 | 波纹夹角/(°) |
---|---|---|---|---|---|---|---|---|---|
316不锈钢 | 258×100 | 人字形 | 2 | 4 | 0.000167 | φ20 | 0.6 | 0.15 | 120 |
表面 | θw/(°) | θDi/(°) | θEG/(°) | γLW/(mJ/m2) | γ-/(mJ/m2) | γ+/(mJ/m2) | γTOT/(mJ/m2) |
---|---|---|---|---|---|---|---|
不锈钢 | 95.0±0.6 | 25.7±0.8 | 48.6±0.5 | 44.56 | 2.29 | 0.81 | 47.09 |
Ni-P镀层 | 84.3±0.5 | 28.6±1.8 | 43.5±2.5 | 44.83 | 1.41 | 0.29 | 46.11 |
Ni-P-TiO2复合纳米镀层 | 64.3±2.4 | 38.4±1.2 | 58.8±0.8 | 41.15 | 9.58 | 0.41 | 44.29 |
Table 3 Contact angle and surface energy of each surface
表面 | θw/(°) | θDi/(°) | θEG/(°) | γLW/(mJ/m2) | γ-/(mJ/m2) | γ+/(mJ/m2) | γTOT/(mJ/m2) |
---|---|---|---|---|---|---|---|
不锈钢 | 95.0±0.6 | 25.7±0.8 | 48.6±0.5 | 44.56 | 2.29 | 0.81 | 47.09 |
Ni-P镀层 | 84.3±0.5 | 28.6±1.8 | 43.5±2.5 | 44.83 | 1.41 | 0.29 | 46.11 |
Ni-P-TiO2复合纳米镀层 | 64.3±2.4 | 38.4±1.2 | 58.8±0.8 | 41.15 | 9.58 | 0.41 | 44.29 |
测试液体 | (mJ/m2) | (mJ/m2) | |||
---|---|---|---|---|---|
水 二碘甲烷 乙二醇 | 72.8 | 21.8 | 51.0 | 25.5 | 25.5 |
50.8 | 50.8 | 0 | 0 | 0 | |
48.0 | 29.0 | 19.0 | 1.92 | 47.0 |
Table 2 Surface energy of the test liquid
测试液体 | (mJ/m2) | (mJ/m2) | |||
---|---|---|---|---|---|
水 二碘甲烷 乙二醇 | 72.8 | 21.8 | 51.0 | 25.5 | 25.5 |
50.8 | 50.8 | 0 | 0 | 0 | |
48.0 | 29.0 | 19.0 | 1.92 | 47.0 |
温度 | 压力 | 体积流量 | 传热系数 | Nusselt数 | 范宁 摩擦系数f |
---|---|---|---|---|---|
±0.20% | ±0.11% | ±0.50% | ±6.69% | ±0.50% | ±0.51% |
Table 4 Uncertainty estimates for measurement and calculation
温度 | 压力 | 体积流量 | 传热系数 | Nusselt数 | 范宁 摩擦系数f |
---|---|---|---|---|---|
±0.20% | ±0.11% | ±0.50% | ±6.69% | ±0.50% | ±0.51% |
Pt100热电阻 | 压差变送器 | 绕线电阻 | A/D转换器 | 电磁流量计 |
---|---|---|---|---|
0.2% | 0.1% | 0.05% | 0.01% | 0.5% |
Table 5 Instrument uncertainty
Pt100热电阻 | 压差变送器 | 绕线电阻 | A/D转换器 | 电磁流量计 |
---|---|---|---|---|
0.2% | 0.1% | 0.05% | 0.01% | 0.5% |
表面 | ||||
---|---|---|---|---|
清洁状态 | 污垢状态 | 清洁状态 | 污垢状态 | |
不锈钢 | C=28.58,n=-0.57 | C=166.49,n=-0.73 | C=0.238,n=0.50 | C=0.052,n=0.69 |
Ni-P镀层 | C=30.53,n=-0.59 | C=190.45,n-0.76 | C=0.245,n=0.51 | C=0.144,n=0.55 |
Ni-P-TiO2复合纳米镀层 | C=42.35,n=-0.64 | C=267.25,n=-0.83 | C=0.161,n=0.59 | C=0.205,n=0.52 |
Table 6 Correlation between friction factors and Nu on different surfaces
表面 | ||||
---|---|---|---|---|
清洁状态 | 污垢状态 | 清洁状态 | 污垢状态 | |
不锈钢 | C=28.58,n=-0.57 | C=166.49,n=-0.73 | C=0.238,n=0.50 | C=0.052,n=0.69 |
Ni-P镀层 | C=30.53,n=-0.59 | C=190.45,n-0.76 | C=0.245,n=0.51 | C=0.144,n=0.55 |
Ni-P-TiO2复合纳米镀层 | C=42.35,n=-0.64 | C=267.25,n=-0.83 | C=0.161,n=0.59 | C=0.205,n=0.52 |
表面 | 热阻波动范围/(m2·K/W) | ||
---|---|---|---|
0.1 m/s | 0.2 m/s | 0.3 m/s | |
不锈钢表面 | -2.69×10-5~25.59×10-5 | -1.91×10-5~19.72×10-5 | -0.80×10-5~12.49×10-5 |
Ni-P镀层 | -1.44×10-5~22.50×10-5 | -0.47×10-5~16.75×10-5 | -0.31×10-5~11.17×10-5 |
Ni-P-TiO2复合纳米镀层 | -0.57×10-5~20.10×10-5 | -0.95×10-5~14.98×10-5 | -1.19×10-5~9.99×10-5 |
Table 7 Fluctuation range of fouling resistance on different surfaces at different flow rates
表面 | 热阻波动范围/(m2·K/W) | ||
---|---|---|---|
0.1 m/s | 0.2 m/s | 0.3 m/s | |
不锈钢表面 | -2.69×10-5~25.59×10-5 | -1.91×10-5~19.72×10-5 | -0.80×10-5~12.49×10-5 |
Ni-P镀层 | -1.44×10-5~22.50×10-5 | -0.47×10-5~16.75×10-5 | -0.31×10-5~11.17×10-5 |
Ni-P-TiO2复合纳米镀层 | -0.57×10-5~20.10×10-5 | -0.95×10-5~14.98×10-5 | -1.19×10-5~9.99×10-5 |
1 | 杨善让, 徐志明, 孙灵芳, 等. 换热设备污垢与对策[M]. 2版. 北京: 科学出版社, 2004: 17. |
Yang S R, Xu Z M, Sun L F, et al. Fouling and Countermeasures of Heat Exchanger[M]. 2nd ed. Beijing: Science Press, 2004: 17. | |
2 | Yang Q, Wilson D I, Chen X, et al. Experimental investigation of interactions between the temperature field and biofouling in a synthetic treated sewage stream[J]. Biofouling, 2013, 29(5): 513-523. |
3 | Cao S X, Zhang Y H, Zhang J, et al. Experimental study on dynamic simulation for biofouling resistance prediction by least squares support vector machine[J]. Energy Procedia, 2012, 17(Part A): 74-78. |
4 | 王洋, 张晓健, 陈雨乔, 等. 给水管网管壁铁细菌生长特性模拟及控制对策研究[J]. 环境科学, 2009, 30(11): 3293-3299. |
Wang Y, Zhang X J, Chen Y Q, et al. Growth characteristics and control of iron bacteria on cast iron in drinking water distribution systems[J]. Environmental Science, 2009, 30(11): 3293-3299. | |
5 | 崔艳雨, 宁丽纳. 飞机油箱用材7075铝合金在积水环境中的微生物腐蚀规律[J]. 材料保护, 2014, 47(12): 29-32. |
Cui Y Y, Ning L N. Microbial corrosion of 7075 aluminum alloy for aircraft fuel tank materials in water environment[J]. Materials Protection, 2014, 47(12): 29-32. | |
6 | 叶春松, 郝洪铎, 王天平, 等. 微生物菌剂处理循环冷却水的作用原理及其工业应用试验[J]. 环境工程, 2019, 37(8): 42-46. |
Ye C S, Hao H D, Wang T P, et al. Principle of recirculating cooling water treated with microbial agents and its industrial test[J]. Environmental Engineering, 2019, 37(8): 42-46. | |
7 | 常思远, 方宇晴, 史琳, 等. Ca2+浓度对再生水源热泵系统中微生物污垢的影响及作用机理[J]. 制冷学报, 2016, 37(6): 55-60. |
Chang S Y, Fang Y Q, Shi L, et al. Effect of Ca2+ concentration on microbial fouling in regenerative water source heat pump system and its mechanism[J]. Journal of Refrigeration, 2016, 37(6): 55-60. | |
8 | 杨帅. 海水板式换热器微生物污垢特性及传热强化的研究[D]. 青岛: 中国海洋大学, 2014. |
Yang S. Study on microbial fouling characteristics and heat transfer enhancement of seawater plate heat exchangers[D]. Qingdao: Ocean University of China, 2014. | |
9 | 马东. 再生水宽流道板式换热器微生物污垢生长规律及其对传热性能影响的研究[D]. 西安: 西安建筑科技大学, 2017. |
Ma D. Study on the growth law of microbial fouling and its influence on heat transfer performance of the wide-flow plate heat exchanger of recycled water[D]. Xi􀆳an: Xi􀆳an University of Architecture and Technology, 2017. | |
10 | 王蓉. 微生物污垢仿生换热模型及数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
Wang R. Bionic heat transfer model and numerical simulation of microbial fouling[D]. Harbin: Harbin Institute of Technology, 2018. | |
11 | 王晶. 换热器表面蛋白质污垢的生长与清洗及抑垢研究[D]. 苏州: 苏州大学, 2018. |
Wang J. Study of protein fouling on heat exchanger surface and anti-fouling[D]. Suzhou: Soochow University, 2018. | |
12 | Chen X, Yang Q R, Wang R H, et al. Experimental study of the growth characteristics of microbial fouling on sewage heat exchanger surface[J]. Applied Thermal Engineering, 2018, 128: 426-433. |
13 | Chandra K, Mahanti A, Singh A P, et al. Microbiologically influenced corrosion of 70/30 cupronickel tubes of a heat-exchanger[J]. Engineering Failure Analysis, 2019, 105: 1328-1339. |
14 | Li N, Yang Q, Yao E, et al. Synergism between particulate and microbial fouling on a heat transfer surface using treated sewage water[J]. Applied Thermal Engineering, 2019, 105: 791-802. |
15 | Zouaghi S, Six T, Nuns N, et al. Influence of stainless steel surface properties on whey protein fouling under industrial processing conditions[J]. Journal of Food Engineering, 2018, 228: 38-49. |
16 | 吕昌旗, 孙玲玲, 王云汉, 等. 换热设备污垢热阻和腐蚀监测技术综述[J]. 现代工业经济和信息化, 2016, 6(6): 73. |
Lyu C Q, Sun L L, Wang Y H, et al. Review of fouling resistance and corrosion monitoring techniques for heat exchange equipment[J]. Modern Industrial Economy and Information Technology, 2016, 6(6): 73. | |
17 | 郭静. 金属材料的表面腐蚀与防护措施分析[J]. 科学技术创新, 2018, (21): 171-172. |
Guo J. Analysis of surface corrosion and protective measures of metal materials[J]. Science and Technology Innovation, 2018, (21): 171-172. | |
18 | 冯刚. 石油化工行业不锈钢的常见腐蚀分析与涂层防护[J]. 涂层与防护, 2018, 39(8): 4-7. |
Feng G. Corrosion analysis and coating protection for stainless steel in petrochemical industry[J]. Coating and Protection, 2018, 39(8): 4-7. | |
19 | Powell C A. Preventing biofouling with copper-nickel alloys[J]. Mater World, 1994, 2(4): 181-183. |
20 | 程延海, 朱真才, 韩正铜, 等. 镀层换热表面凝结传热实验研究[J]. 中国电机工程学报, 2010, 30(8): 27-31. |
Cheng Y H, Zhu Z C, Han Z T, et al. Experimental study on condensation and heat transfer of coating heat exchange surface[J]. Proceedings of the CSEE, 2010, 30(8): 27-31. | |
21 | Cheng Y H, Zou Y, Cheng L, et al. Effect of the microstructures on the properties of Ni-P deposits on heat transfer surface[J]. Surface and Coatings Technology, 2009, 203(12): 1559-1564. |
22 | 杨倩鹏, 田磊, 常思远, 等. 换热表面镀银抑制微生物污垢综合分析[J]. 工程热物理学报, 2014, (2): 354-357. |
Yang Q P, Tian L, Chang S Y, et al. Comprehensive analysis of inhibition of microbial fouling by silver plating on heat exchange surface[J]. Journal of Engineering Thermophysics, 2014, (2): 354-357. | |
23 | Huang K, Goddard J M. Influence of fluid milk product composition on fouling and cleaning of Ni–PTFE modified stainless steel heat exchanger surfaces[J]. Journal of Food Engineering, 2015(158): 22-29. |
24 | Zhao Q, Liu C, Su X, et al. Antibacterial characteristics of electroless plating Ni–P–TiO2 coatings[J]. Applied Surface Science, 2013, 274: 101-104. |
25 | Jindal S, Anand S, Metzger L, et al. Short communication: a comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run[J]. Journal of Dairy Science, 2018, 101(4): 2921-2926. |
26 | Oldani V, Biella S, Bianchi C L, et al. Perfluoropolyethers coatings design for fouling reduction on heat transfer stainless-steel surfaces[J]. Heat Transfer Engineering, 2016, 37: 210-219. |
27 | Balasubramanian S, Puri V M. Thermal energy savings in pilot-scale plate heat exchanger system during product processing using modified surfaces[J]. Journal of Food Engineering, 2009, 91(4): 608-611. |
28 | Lukas S, Wolfgang A, Stephan S, et al. Fouling mitigation in food processes by modification of heat transfer surfaces: a review[J]. Food and Bioproducts Processing, 2020, 121: 1-19. |
29 | 罗敏, 司徒振明. 液体界面张力的测定方法——悬滴法[J]. 材料工程, 1989, (2): 23-26. |
Luo M, Situ Z M. Method for measuring liquid interfacial tension— method of hanging-drop[J]. Materials Engineering, 1989, (2): 23-26. | |
30 | Bellon-Fontaine M N, Rault J, Oss V. Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells[J]. Colloids & Surface B, 1996, 7(1/2): 47-53. |
31 | 张海泉. 板式换热器热工与阻力性能测试及计算方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. |
Zhang H Q. Testing and calculate method study on thermal performance and flow pressure drop characteristics of a plate heat exchanger[D]. Harbin: Harbin Institute of Technology, 2006. | |
32 | 徐志明, 贾玉婷, 王丙林, 等. 板式换热器铁细菌生物污垢特性的实验分析[J]. 化工学报, 2014, 65(8): 3178-3183. |
Xu Z M, Jia Y T, Wang B L, et al. Experimental analysis on bio-fouling of iron bacteria on plate heat exchanger[J].CIESC Journal, 2014, 65(8): 3178-3183. | |
33 | Webb R L. Heat transfer and friction characteristics of internal helical-rib roughness[J]. Journal of Heat Transfer, 2000, 122(1): 134-142. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Wenxiang NI, Jing ZHAO, Bo LI, Xiaolin WEI, Dongyin WU, Di LIU, Qiang WANG. Study on waste heat boiler ash deposition characteristics in sensible heat recovery process of converter gas [J]. CIESC Journal, 2023, 74(8): 3485-3493. |
[3] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[4] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[5] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
[6] | Ping OUYANG, Rui ZHANG, Jian ZHOU, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG. Electrochemical behavior and copper electrodeposition mechanism of Cu-Al bimetallic composite ionic liquid [J]. CIESC Journal, 2022, 73(7): 3212-3221. |
[7] | Cong YUAN, Ge PU, Jie GAO, Shuaihui JIA. Biomass chemical-looping gasification characteristics of K-modified BaFe2O4 oxygen carrier [J]. CIESC Journal, 2022, 73(3): 1359-1368. |
[8] | Junjun GU, Rui LI, Xingyi WU, Xianqiang TANG, Yanping HU. Study on the control effect of electrokinetic drainage of pore water on nitrogen release flux at the mud-water interface [J]. CIESC Journal, 2022, 73(11): 5118-5127. |
[9] | Zuodong LIU, Yuchen WANG, Weiwei XING, Bo ZHAO, Zhiming XU. Analysis of composite modified surface inhibiting particle fouling accumulation characteristics [J]. CIESC Journal, 2022, 73(11): 4928-4937. |
[10] | Maoqiao XIANG, Yuqi GENG, Qingshan ZHU. Research advances in preparation technology and quality of silicon nitride powder [J]. CIESC Journal, 2022, 73(1): 73-84. |
[11] | Shaoling CONG, Jie ZHAO, Yufei YANG, Changqing WU, Fan HE, Hua YUAN, Xiaoqin WANG, Shanxin XIONG, Yan WU, Anning ZHOU. Synthesis of N-doped carbon micro-nanotubes using coal-based polyaniline as a carbon and nitrogen source [J]. CIESC Journal, 2021, 72(9): 4950-4960. |
[12] | JIN Mo, LIU Daoyin, CHEN Xiaoping. Numerical simulation research of high-alkali coal ash deposition process based on discrete element method [J]. CIESC Journal, 2021, 72(4): 1939-1946. |
[13] | Guoyue QIAO, Jutao LIU, Jianfei SUN, Qinqin XU, Jianzhong YIN. Study on crystallization kinetics of supported nanoparticles controlled by desorption of supercritical carbon dioxide [J]. CIESC Journal, 2021, 72(11): 5849-5857. |
[14] | Pengfei WU, Ke WANG, Jue ZHAO. Flow pattern and pressure drop on shell side of shell and plate heat exchanger under adiabatic state [J]. CIESC Journal, 2020, 71(7): 3042-3049. |
[15] | Yuan SANG, Maoqiao XIANG, Miao SONG, Qingshan ZHU. Preparation of nearly-stoichiometric TiN powder by chemical vapor deposition in fluidized-bed [J]. CIESC Journal, 2020, 71(6): 2743-2751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||