CIESC Journal ›› 2020, Vol. 71 ›› Issue (S2): 98-103.DOI: 10.11949/0438-1157.20200492
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Huijun FENG3(),Lingen CHEN1,2(),Zhixiang WU3,Wei TANG3,Junchao SHI3
Received:
2020-05-06
Revised:
2020-05-10
Online:
2020-11-06
Published:
2020-11-06
Contact:
Lingen CHEN
通讯作者:
陈林根
作者简介:
冯辉君(1985—),男,博士,讲师,基金资助:
CLC Number:
Huijun FENG, Lingen CHEN, Zhixiang WU, Wei TANG, Junchao SHI. Constructal optimization for an organic fluid shell-and-tube condenser based on entransy theory[J]. CIESC Journal, 2020, 71(S2): 98-103.
冯辉君, 陈林根, 吴志祥, 唐威, 石俊朝. 基于理论的有机工质管壳式冷凝器构形优化[J]. 化工学报, 2020, 71(S2): 98-103.
Add to citation manager EndNote|Ris|BibTeX
1 | Bonneau C, Josset C, Melot V, et al. Comprehensive review of pure vapour condensation outside of horizontal smooth tubes [J]. Nucl. Eng. Design, 2019, 349: 92-108. |
2 | Johnson C M, Vanderplaats G N, Marto P J. Marine condenser design using numerical optimization [J]. J. Mech. Design, 1980, 102(3): 469-475. |
3 | Haseli Y, Dincer I, Naterer G F. Optimum temperatures in a shell and tube condenser with respect to exergy [J]. Int. J. Heat Mass Transfer, 2008, 51(9/10): 2462-2470. |
4 | Li Y R, Du M T, Wu S Y, et al. Exergoeconomic analysis and optimization of a condenser for a binary mixture of vapors in organic Rankine cycle [J]. Energy, 2012, 40(1): 341-347. |
5 | Turgut O E. Multi-objective thermal design optimization of a shell and tube condenser through global best algorithm [J]. J. Sci. Eng., 2017, 19(56): 644-665. |
6 | Singh S K, Energy Sarkar J., exergy and economic assessments of shell and tube condenser using hybrid nanofluid as coolant [J]. Int. Comm. Heat Mass Transfer, 2018, 98: 41-48. |
7 | Chen P Y, Yan H B, Xie G N, et al. Thermal design and performance prediction of a shell condenser for closed-cycle underwater vehicles [C]// ASME International Mechanical Engineering Congress & Exposition (IMECE) Conference. Pittsburgh, Pennsylvania, 2018: IMECE2018-86999. |
8 | Zhong D W, Meng J A, Qin P, et al. Effect of cooling water flow path on the flow and heat transfer in a 660 MW power plant condenser [J]. J. Thermal Sci., 2019, 28(2): 262-270. |
9 | Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume [J]. Int. J. Heat Mass Transfer, 1997, 40(4): 799-816. |
10 | Bejan A, Lorente S. Design with Constructal Theory [M]. New Jersey: Wiley, 2008. |
11 | 陈林根. 构形理论及其应用的研究进展[J]. 中国科学: 技术科学, 2012, 42(5): 505-524. |
Chen L G. Advances in constructal theory and its applications [J]. Sci. China: Tech. Sci., 2012, 42(5): 505-524. | |
12 | 陈林根, 冯辉君. 流动和传热传质过程的多目标构形优化[M]. 北京: 科学出版社, 2017. |
Chen L G, Feng H J. Multi-objective Constructal Optimizations for Fluid Flow, Heat and Mass Transfer Processes [M]. Beijing: Science Press, 2017. | |
13 | Chen L G, Feng H J, Xie Z H, et al. Progress of constructal theory in China over the past decade [J]. Int. J. Heat Mass Transfer, 2019, 130: 393-419. |
14 | Chen L G, Yang A B, Feng H J, et al. Constructal designs for eight types of heat sinks [J]. Sci. China: Tech. Sci., 2020, 63: 879–911. |
15 | Kim Y S. Design with constructal theory: steam generators, turbines and heat exchangers [D]. USA: Duke University, 2010. |
16 | Bejan A, Lee J, Lorente S, et al. The evolutionary design of condensers [J]. J. Appl. Phys., 2015, 117(12): 125101. |
17 | 吴志祥, 冯辉君, 陈林根, 等. 基于构形理论的海洋温差发电系统冷凝器设计优化[C]//高等学校工程热物理第二十五届全国学术会议. 2019: B-2019066.Wu Z X, Feng H J, Chen L G,et al. Design optimization of a condenser in OTECS based on constructal theory [C]// The 25th National Academic Conference of Engineering Thermophysics for College. 2019: B-2019066. |
18 | Nejad A H, Ekici K, Sabau A S, et al. Counter cross-flow evaporator geometries for supercritical organic Rankine cycles [J]. Int. J. Heat Mass Transfer, 2019, 135: 425-435. |
19 | Wu Z X, Feng H J, Chen L G, et al. Pumping power minimization of an evaporation in ocean thermal energy conversion system based on constructal theory [J]. Energy, 2019, 181: 974-984. |
20 | Feng H J, Chen L G, Wu Z X, et al. Constructal design of a shell-and-tube heat exchanger for organic fluid evaporation process [J]. Int. J. Heat Mass Transfer, 2019, 131: 750-756. |
21 | Xie Z J, Feng H J, Chen L G, et al. Constructal design for supercharged boiler evaporator [J]. Int. J. Heat Mass Transfer, 2019, 138: 571-579. |
22 | Cai C G, Feng H J, Chen L G, et al. Constructal design of a shell-and-tube evaporator with ammonia-water working fluid [J]. Int. J. Heat Mass Transfer, 2019, 135: 541-547. |
23 |
冯辉君, 陈林根, 吴志祥, 等. 基于理论的有机工质管壳式换热器构形优化[J]. 中国科学: 技术科学, 2020, DOI: 10.1360/SST-2019-0246.
DOI |
Feng H J, Chen L G, Wu Z X, et al. Constructal optimization for an organic fluid shell-and-tube heat exchanger based on entransy theory [J]. Sci. Sin. Tech., 2020, DOI: 10.1360/SST-2019-0246.
DOI |
|
24 | Feng H J, Xie Z J, Chen L G, et al. Constructal design for supercharged boiler superheater [J]. Energy, 2020, 191: 116484. |
25 | Wu Z X, Feng H J, Chen L G, et al. Optimal design of dual-pressure turbine in OTEC system based on constructal theory [J]. Energy Convers. Mgmt., 2019, 201: 112179. |
26 | Wu Z X, Feng H J, Chen L G, et al. Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic rankine cycle [J]. Energy Convers. Mgmt., 2020, 210: 112727. |
27 | Guo Z Y, Zhu H Y, Liang X G. Entransy — a physical quantity describing heat transfer ability [J]. Int. J. Heat Mass Transfer, 2007, 50(13/14): 2545-2556. |
28 | 李志信. 过增元. 对流传热优化的场协同理论[M]. 北京: 科学出版社, 2010. |
Li Z X, Guo Z Y. Field Synergy Principle of Heat Convection Optimization [M]. Beijing: Science Press, 2010. | |
29 | 梁新刚, 陈群, 过增元. 传热理论及其应用[M]. 北京: 科学出版社, 2019. |
Liang X G, Chen Q, Guo Z Y. Entransy Theory for Heat Transfer Analyses and Optimizations [M]. Beijing: Science Press, 2019. | |
30 | 陈林根. 理论及其应用的进展 [J]. 科学通报, 2012, 57(30): 2815-2835. |
Chen L G. Progress in entransy theory and its applications [J]. Chin. Sci. Bull., 2012, 57(30): 2815-2835. | |
31 | Chen Q, Liang X G, Guo Z Y. Entransy theory for the optimization of heat transfer — a review and update [J]. Int. J. Heat Mass Transfer, 2013, 63: 65-81. |
32 | Cheng X T, Zhao J M, Liang X G. Discussion on the extensions of the entransy theory [J]. Sci. China Tech. Sci., 2017, 60(3): 363-373. |
33 | Chen X, Zhao T, Zhang M Q, et al. Entropy and entransy in convective heat transfer optimization: a review and perspective [J]. Int. J. Heat Mass Transfer, 2019, 137: 1191-1120. |
34 | 李婷婷. 火电厂凝汽器耗散分析[D]. 北京: 华北电力大学, 2015. |
Li T T. Entransy dissipation analysis of thermal power plant􀆳s condenser [D]. Beijing: North China Electric Power University, 2015. | |
35 | 孟继安, 李志信. 管束布置对凝汽器性能影响的分析及其应用[J]. 科学通报, 2016, 61: 1877-1888. |
Meng J A, Li Z X. Entransy analysis of tube arrangement effect on condenser performances and its application [J]. Chin. Sci. Bull., 2016, 61: 1877-1888. | |
36 | Malakar D, Geete A. Application of entropy and entransy concepts to design shell and tube type surface condenser at different 4L/D ratios for Maral Overseas Ltd [J]. Int. J. Ambient Energy, 2020, 41: 813-822. |
37 | 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006. |
Yang S M, Tao W Q. Heat Transfer [M]. Beijing: Higher Education Press, 2006. | |
38 | 钱颂文. 换热器设计手册[M]. 北京: 化学工业出版社, 2002. |
Qian S W. Heat Exchanger Design Handbook [M]. Beijing: Chemical Industry Press, 2002. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[4] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[5] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[6] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[7] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[8] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[9] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[10] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[11] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[12] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[13] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[14] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[15] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||