CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4553-4563.DOI: 10.11949/0438-1157.20210298
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Shuguang LIU(),Wenqi ZHONG(),Xi CHEN
Received:
2021-03-01
Revised:
2021-05-17
Online:
2021-09-05
Published:
2021-09-05
Contact:
Wenqi ZHONG
通讯作者:
钟文琪
作者简介:
刘曙光(1995—),男,硕士研究生,基金资助:
CLC Number:
Shuguang LIU, Wenqi ZHONG, Xi CHEN. Experiment study of jetting characteristic in gas-solid fluidized bed using X-ray computed tomography[J]. CIESC Journal, 2021, 72(9): 4553-4563.
刘曙光, 钟文琪, 陈曦. 基于XCT的气固流化床布风板射流特征研究[J]. 化工学报, 2021, 72(9): 4553-4563.
Add to citation manager EndNote|Ris|BibTeX
材料 | 直径dp/ mm | 密度ρp/ (kg/m3) | 空隙率εb | 最小流化速度Umf/(m/s) |
---|---|---|---|---|
石英砂 | 0.20~0.35 | 2650 | 0.50 | 0.07 |
石英砂 | 0.35~0.45 | 2650 | 0.48 | 0.14 |
石英砂 | 0.45~0.60 | 2650 | 0.45 | 0.29 |
Table 1 Properties of bed material particles
材料 | 直径dp/ mm | 密度ρp/ (kg/m3) | 空隙率εb | 最小流化速度Umf/(m/s) |
---|---|---|---|---|
石英砂 | 0.20~0.35 | 2650 | 0.50 | 0.07 |
石英砂 | 0.35~0.45 | 2650 | 0.48 | 0.14 |
石英砂 | 0.45~0.60 | 2650 | 0.45 | 0.29 |
布风板类型 | 孔口数量n0 | 孔口直径d0/mm | 孔口均分面积A0/mm2 |
---|---|---|---|
A-1 | 37 | 1 | 212 |
A-1.5 | 37 | 1.5 | 212 |
A-2 | 37 | 2 | 212 |
B-1 | 61 | 1 | 129 |
Table 2 Structural parameters of aeration plate
布风板类型 | 孔口数量n0 | 孔口直径d0/mm | 孔口均分面积A0/mm2 |
---|---|---|---|
A-1 | 37 | 1 | 212 |
A-1.5 | 37 | 1.5 | 212 |
A-2 | 37 | 2 | 212 |
B-1 | 61 | 1 | 129 |
1 | 马旺宇, 罗正鸿. Geldart-B类颗粒在气固流化床中的床层膨胀与流型转变[J]. 化工学报, 2019, 70(7): 2472-2479. |
Ma W Y, Luo Z H. Bed expansion and fluidized states change of Geldart-B particle gas-solid fluidized bed[J]. CIESC Journal, 2019, 70(7): 2472-2479. | |
2 | Vollmari K, Jasevičius R, Kruggel-Emden H. Experimental and numerical study of fluidization and pressure drop of spherical and non-spherical particles in a model scale fluidized bed[J]. Powder Technology, 2016, 291: 506-521. |
3 | Chen X, Zhong W Q, Heindel T J. Fluidization of cylinder particles in a fluidized bed[J]. Advanced Powder Technology, 2017, 28(3): 820-835. |
4 | Chen X, Zhong W Q, Heindel T J. Orientation of cylindrical particles in a fluidized bed based on stereo X-ray particle tracking velocimetry (XPTV)[J]. Chemical Engineering Science, 2019, 203: 104-112. |
5 | 刘沁雯, 钟文琪, 邵应娟, 等. 固体燃料流化床富氧燃烧的研究动态与进展[J]. 化工学报, 2019, 70(10): 3791-3807. |
Liu Q W, Zhong W Q, Shao Y J, et al. Research trends and recent advances of oxy-fuel combustion of solid fuels in fluidized beds[J]. CIESC Journal, 2019, 70(10): 3791-3807. | |
6 | 孙子文, 陈岱琳, 钟文琪, 等. 快速流化床颗粒团絮特征的MP-PIC数值模拟[J]. 化工学报, 2018, 69(8): 3443-3451. |
Sun Z W, Chen D L, Zhong W Q, et al. MP-PIC simulation of particle clusters in fast fluidized bed risers[J]. CIESC Journal, 2018, 69(8): 3443-3451. | |
7 | Lu H L, He Y R, Gidaspow D, et al. Size segregation of binary mixture of solids in bubbling fluidized beds[J]. Powder Technology, 2003, 134(1/2): 86-97. |
8 | Si C D, Guo Q J. Fluidization characteristics of binary mixtures of biomass and quartz sand in an acoustic fluidized bed[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9773-9782. |
9 | Zhang Y, Jin B S, Zhong W Q. Experimental investigation on mixing and segregation behavior of biomass particle in fluidized bed[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(3): 745-754. |
10 | Karami S, Goharrizi A S, Abolpour B, et al. Numerical study of the particles segregation phenomenon in the fluidized beds[J]. Multidiscipline Modeling in Materials & Structures, 2019, 16(3): 538-556. |
11 | Xu P F, Li Y X, Wang Y J, et al. Gas-solid mixing characteristics of Geldart B particles in a fluidized bed with different height-to-diameter ratios[J]. Journal of Physics: Conference Series, 2021, 1732: 012166. |
12 | Rowe P N, Macgillivray H J, Cheesman D J. Gas discharge from orifice into a gas fluidized bed[J]. Trans. IChemE, 1979, 57(3): 194-199. |
13 | Rees A C, Davidson J F, Dennis J S, et al. The nature of the flow just above the perforated plate distributor of a gas-fluidised bed, as imaged using magnetic resonance[J]. Chemical Engineering Science, 2006, 61(18): 6002-6015. |
14 | Müller C R, Holland D J, Davidson J F, et al. Geometrical and hydrodynamical study of gas jets in packed and fluidized beds using magnetic resonance[J]. The Canadian Journal of Chemical Engineering, 2009, 87(4): 517-525. |
15 | Pore M, Holland D J, Chandrasekera T C, et al. Magnetic resonance studies of a gas-solids fluidised bed: jet-jet and jet-wall interactions[J]. Particuology, 2010, 8(6): 617-622. |
16 | Escudero D R, Heindel T J. Characterizing jetting in an acoustic fluidized bed using X-ray computed tomography[J]. Journal of Fluids Engineering, 2016, 1(4): 41309. |
17 | Panariello L, Materazzi M, Solimene R, et al. X-ray imaging of horizontal jets in gas fluidised bed nozzles[J]. Chemical Engineering Science, 2017, 164: 53-62. |
18 | Merry J M D. Penetration of vertical jets into fluidized beds[J]. AIChE Journal, 1975, 21(3): 507-510. |
19 | Vaccaro S, Musmarra D, Petrecca M. Evaluation of the jet penetration depth in gas-fluidized beds by pressure signal analysis[J]. International Journal of Multiphase Flow, 1997, 23(4): 683-698. |
20 | Vaccaro S, Musmarra D, Petrecca M. A technique for measurement of the jet penetration height in fluidized beds by pressure signal analysis[J]. Powder Technology, 1997, 92(3): 223-231. |
21 | Wen C Y, Deole N R, Chen L H. A study of jets in a three-dimensional gas fluidized bed[J]. Powder Technology, 1982, 31(2): 175-184. |
22 | Cleaver J A S, Ghadiri M, Tuponogov V G, et al. Measurement of jet angles in fluidized beds[J]. Powder Technology, 1995, 85(3): 221-226. |
23 | Yang W C, Keairns D L. Estimating the jet penetration depth of multiple vertical grid jets[J]. Industrial & Engineering Chemistry Fundamentals, 1979, 18(4): 317-320. |
24 | Filla M, Massimilla L, Vaccaro S. Gas jets in fluidized beds: the influence of particle size, shape and density on gas and solids entrainment[J]. International Journal of Multiphase Flow, 1983, 9(3): 259-267. |
25 | Blake T R, Webb H, Sunderland P B. The nondimensionalization of equations describing fluidization with application to the correlation of jet penetration height[J]. Chemical Engineering Science, 1990, 45(2): 365-371. |
26 | Sidky E Y, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine and Biology, 2008, 53(17): 4777-4807. |
27 | Hsieh J. Computed Tomography Principles, Design, Artifacts, and Recent Advances [M]. 2nd ed. Wiley,2009. |
28 | Kingston T A, Morgan T B, Geick T A, et al. A cone-beam compensated back-projection algorithm for X-ray particle tracking velocimetry[J]. Flow Measurement and Instrumentation, 2014, 39: 64-75. |
29 | Morgan T B, Heindel T J. Sensitivity of X-ray computed tomography measurements of a gas-solid flow to variations in acquisition parameters[J]. Flow Measurement and Instrumentation, 2017, 55: 82-90. |
30 | Jaffray D A, Wong J W, Siewerdesen J H. Cone beam computed tomography with a flat panel imager: US7471765[P]. 2008-12-30. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[3] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[4] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[5] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[6] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[7] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[8] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[9] | Li NIU, Mengxi LIU, Haibei WANG. Hydrodynamic of mesoscale flow structure in dense phase fluidized bed [J]. CIESC Journal, 2022, 73(6): 2622-2635. |
[10] | Yilin LIU, Yu LI, Yaxiong YU, Zheqing HUANG, Qiang ZHOU. Construction of two parameter mesoscale heat transfer model for gas-solid flow based on resetting temperature method [J]. CIESC Journal, 2022, 73(6): 2612-2621. |
[11] | Yongli MA, Mingyan LIU, Zongding HU. Development of flow mesoscale modeling of the gas-liquid-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2438-2451. |
[12] | Tao ZHENG, Haiyan LIU, Rui ZHANG, Xianghai MENG, Yuanyuan YUE, Zhichang LIU. Research progress on mesoscale activation of natural aluminosilicate minerals based on green synthesis of molecular sieve [J]. CIESC Journal, 2022, 73(6): 2334-2351. |
[13] | Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Liquid-liquid two-phase flow and mesoscale effect in parallel microchannels [J]. CIESC Journal, 2022, 73(6): 2563-2572. |
[14] | Chan WANG, Guoxi XIAO, Xiaoxue GUO, Renwei XU, Yuanyuan YUE, Xiaojun BAO. Green synthesis and application of Beta zeolite prepared via mesoscale depolymerization-reorganization strategy [J]. CIESC Journal, 2022, 73(6): 2690-2697. |
[15] | Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization [J]. CIESC Journal, 2022, 73(6): 2486-2495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||