CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2334-2351.DOI: 10.11949/0438-1157.20220160
• Reviews and monographs • Previous Articles Next Articles
Tao ZHENG1(),Haiyan LIU1(),Rui ZHANG1,Xianghai MENG1,Yuanyuan YUE2,Zhichang LIU1()
Received:
2022-02-07
Revised:
2022-03-18
Online:
2022-06-30
Published:
2022-06-05
Contact:
Haiyan LIU,Zhichang LIU
郑涛1(),刘海燕1(),张睿1,孟祥海1,岳源源2,刘植昌1()
通讯作者:
刘海燕,刘植昌
作者简介:
郑涛(1994—),男,博士研究生,基金资助:
CLC Number:
Tao ZHENG, Haiyan LIU, Rui ZHANG, Xianghai MENG, Yuanyuan YUE, Zhichang LIU. Research progress on mesoscale activation of natural aluminosilicate minerals based on green synthesis of molecular sieve[J]. CIESC Journal, 2022, 73(6): 2334-2351.
郑涛, 刘海燕, 张睿, 孟祥海, 岳源源, 刘植昌. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351.
1 | Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chemical Reviews, 1995, 95(3): 559-614. |
2 | Zhang Q, Yu J H, Corma A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities[J]. Advanced Materials, 2020, 32(44): 2002927. |
3 | Ivanova I I, Knyazeva E E. Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications[J]. Chemical Society Reviews, 2013, 42(9): 3671-3688. |
4 | Xie B, Zhang H Y, Yang C G, et al. Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates[J]. Chemical Communications (Cambridge, England), 2011, 47(13): 3945-3947. |
5 | Iyoki K, Itabashi K, Okubo T. Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents[J]. Microporous and Mesoporous Materials, 2014, 189: 22-30. |
6 | Itabashi K, Kamimura Y, Iyoki K, et al. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent[J]. Journal of the American Chemical Society, 2012, 134(28): 11542-11549. |
7 | Yue Y Y, Zhu H B, Wang T H, et al. Green fabrication of hierarchical zeolites from natural minerals[J]. National Science Review, 2020, 7(11): 1632-1634. |
8 | Howell P A. Process for synthetic zeolite A: US3114603[P]. 1963-12-17. |
9 | Haden W L, Dzierzanowski F J. Method for preparing crystalline zeolite catalyst: US3433587[P]. 1969-03-18. |
10 | Haden W L, Dzierzanowski F J. Method for making a faujasite-type crystalline zeolite: US3119659[P]. 1967-08-29. |
11 | Walter L H. Synthetic zeolite contact masses and method for making the same: US3367886[P]. 1968-02-06. |
12 | Brown S M, Woltermann G M. Zeolitized composite bodies and manufacture thereof: US4235753[P]. 1980-11-25. |
13 | Brown S M, Durante V A, Reagan W J, et al. Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weight Y-faujasite and methods for making: US4493902[P]. 1985-01-15. |
14 | Yue Y Y, Kang Y, Bai Y, et al. Seed-assisted, template-free synthesis of ZSM-5 zeolite from natural aluminosilicate minerals[J]. Applied Clay Science, 2018, 158: 177-185. |
15 | Yue Y Y, Gu L L, Zhou Y N, et al. Template-free synthesis and catalytic applications of microporous and hierarchical ZSM-5 zeolites from natural aluminosilicate minerals[J]. Industrial & Engineering Chemistry Research, 2017, 56(36): 10069-10077. |
16 | Yue Y Y, Liu H Y, Yuan P, et al. From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: a nanoscale depolymerization-reorganization approach[J]. Journal of Catalysis, 2014, 319: 200-210. |
17 | Yang J B, Liu H Y, Diao H J, et al. A quasi-solid-phase approach to activate natural minerals for zeolite synthesis[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3233-3242. |
18 | Walter L H. Fluid catalyst and preparation thereof: US3503900[P]. 1970-03-31. |
19 | Lerner B A, Stockwell D M, Madon R J. Modified microsphere FCC catalysts and manufacture thereof: US5559067[P]. 1996-09-24. |
20 | Liu H T, Bao X J, Wei W S, et al. Synthesis and characterization of Kaolin/NaY/MCM-41 composites[J]. Microporous and Mesoporous Materials, 2003, 66(1): 117-125. |
21 | Meor Yusoff M S, Masilana M, Choo T F, et al. Production of high purity alumina and zeolite from low-grade Kaolin[J]. Advanced Materials Research, 2007, 29/30: 187-190. |
22 | Ríos C A, Williams C D, Fullen M A. Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods[J]. Applied Clay Science, 2009, 42(3/4): 446-454. |
23 | Wei B Y, Liu H Y, Li T S, et al. Natural rectorite mineral: a promising substitute of Kaolin for in situ synthesis of fluid catalytic cracking catalysts[J]. AIChE Journal, 2010, 56(11): 2913-2922. |
24 | Zhu J, Cui Y, Wang Y, et al. Direct synthesis of hierarchical zeolite from a natural layered material[J]. Chemical Communications (Cambridge, England), 2009(22): 3282-3284. |
25 | Li T S, Liu H Y, Fan Y, et al. Synthesis of zeolite Y from natural aluminosilicate minerals for fluid catalytic cracking application[J]. Green Chemistry, 2012, 14(12): 3255. |
26 | Yue Y Y, Liu H Y, Yuan P, et al. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3 [J]. Scientific Reports, 2015, 5: 9270. |
27 | Yue Y Y, Liu B, Lv N G, et al. Direct synthesis of hierarchical FeCu-ZSM-5 zeolite with wide temperature window in selective catalytic reduction of NO by NH3 [J]. ChemCatChem, 2019, 11(19): 4744-4754. |
28 | Yue Y Y, Liu B, Qin P, et al. One-pot synthesis of FeCu-SSZ-13 zeolite with superior performance in selective catalytic reduction of NO by NH3 from natural aluminosilicates[J]. Chemical Engineering Journal, 2020, 398: 125515. |
29 | Zhou Y N, Liu H Y, Rao X R, et al. Controlled synthesis of ZSM-5 zeolite with an unusual Al distribution in framework from natural aluminosilicate mineral[J]. Microporous and Mesoporous Materials, 2020, 305: 110357. |
30 | Chaisena A, Rangsriwatananon K. Synthesis of sodium zeolites from natural and modified diatomite[J]. Materials Letters, 2005, 59(12): 1474-1479. |
31 | 李铁森. 基于天然硅铝矿物的分子筛绿色合成新方法研究[D]. 北京: 中国石油大学(北京), 2012. |
Li T S. Green synthesis of molecular sieve from natural aluminosilicate minerals[D]. Beijing: China University of Petroleum, 2012. | |
32 | Lee S, Kim Y J, Moon H S. Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope[J]. Journal of the American Ceramic Society, 1999, 82(10): 2841-2848. |
33 | Rocha J, Klinowski J. 29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite[J]. Physics and Chemistry of Minerals, 1990, 17(2): 179-186. |
34 | Chandrasekhar S. Influence of metakaolinization temperature on the formation of zeolite 4A from Kaolin[J]. Clay Minerals, 1996, 31(2): 253-261. |
35 | Rocha J. Single- and triple-quantum 27Al MAS NMR study of the thermal transformation of kaolinite[J]. The Journal of Physical Chemistry B, 1999, 103(44): 9801-9804. |
36 | Takahashi H. Effects of dry grinding on Kaolin minerals ( Ⅰ ) : Kaolinite[J]. Bulletin of the Chemical Society of Japan, 1959, 32(3): 235-245. |
37 | Torres Sánchez R M, Basaldella E I, Marco J F. The effect of thermal and mechanical treatments on kaolinite: characterization by XPS and IEP measurements[J]. Journal of Colloid and Interface Science, 1999, 215(2): 339-344. |
38 | Basaldella E I, Kikot A, Pereira E. Synthesis of zeolites from mechanically activated Kaolin clays[J]. Reactivity of Solids, 1990, 8(1/2): 169-177. |
39 | Klevtsov D P, Krivoruchko O P, Mastikhin V M, et al. Influence of mechano-chemical activation and thermal treatment of kaolinite on cation distribution of Al(Ⅲ) and formation of Na-A zeolite[J]. Reaction Kinetics and Catalysis Letters, 1988, 36(2): 319-324. |
40 | Sánchez-Soto P J, del Carmen Jiménez de Haro M, Pérez-Maqueda L A, et al. Effects of dry grinding on the structural changes of kaolinite powders[J]. Journal of the American Ceramic Society, 2000, 83(7): 1649-1657. |
41 | Mysen B O. The structure of silicate melts[J]. Annual Review of Earth and Planetary Sciences, 1983, 11: 75-97. |
42 | Henderson G S, Calas G, Stebbins J F. The structure of silicate glasses and melts[J]. Elements, 2006, 2(5): 269-273. |
43 | Liebau F. Structural Chemistry of Silicates: Structure, Bonding, and Classification[M]. Berlin: Springer-Verlag Berlin Heidelberg, 1985: 80-85. |
44 | Kano J, Saito F. Correlation of powder characteristics of talc during Planetary Ball Milling with the impact energy of the balls simulated by the particle element method[J]. Powder Technology, 1998, 98(2): 166-170. |
45 | Lee S, Kim Y J, Moon H S. Energy-filtering transmission electron microscopy (EF-TEM) study of a modulated structure in metakaolinite, represented by a 14 Å modulation[J]. Journal of the American Ceramic Society, 2003, 86(1): 174-176. |
46 | Dion P, Alcover J F, Bergaya F, et al. Kinetic study by controlled-transformation rate thermal analysis of the dehydroxylation of kaolinite[J]. Clay Minerals, 1998, 33(2): 269-276. |
47 | Sperinck S, Raiteri P, Marks N, et al. Dehydroxylation of kaolinite to metakaolin—a molecular dynamics study[J]. Journal of Materials Chemistry, 2011, 21(7): 2118-2125. |
48 | White C E, Provis J L, Proffen T, et al. Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation[J]. The Journal of Physical Chemistry. A, 2010, 114(14): 4988-4996. |
49 | Rocha J, Klinowski J. Solid-state NMR studies of the structure and reactivity of metakaolinite[J]. Angewandte Chemie International Edition in English, 1990, 29(5): 553-554. |
50 | Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics[M]. New York: John Wiley & Sons, Inc., 1976: 359-361. |
51 | Ehrlich H, Demadis K D, Pokrovsky O S, et al. Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments[J]. Chemical Reviews, 2010, 110(8): 4656-4689. |
52 | Edén M. NMR studies of oxide-based glasses[J]. Annual Reports Section C: Physical Chemistry, 2012, 108(1): 177-221. |
53 | Yarger J L, Smith K H, Nieman R A, et al. Al coordination changes in high-pressure aluminosilicate liquids[J]. Science, 1995, 270(5244): 1964-1967. |
54 | Kouassi S S, Andji J, Bonnet J P, et al. Dissolution of waste glasses in high alkaline solutions[J]. Ceram-silikaty, 2010, 54(3): 235-240. |
55 | 伊莉, 马红超, 付颖寰, 等. 膨润土碱熔活化合成4A分子筛[J]. 应用化学, 2009, 26(12): 1445-1449. |
Yi L, Ma H C, Fu Y H, et al. Synthesis of 4A zeolite from alkali-activated bentonite[J]. Chinese Journal of Applied Chemistry, 2009, 26(12): 1445-1449. | |
56 | Wajima T, Ikegami Y. Synthesis of zeolite-X from waste porcelain using alkali fusion[M]//Ceramic Transactions Series. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010: 305-314. |
57 | Ma H C, Yao Q T, Fu Y H, et al. Synthesis of zeolite of type A from bentonite by alkali fusion activation using Na2CO3 [J]. Industrial & Engineering Chemistry Research, 2010, 49(2): 454-458. |
58 | Ríos R C, Williams C D, Castellanos A O. Synthesis of zeolite LTA from thermally treated kaolinite[J]. Revista Facultad de Ingeniería Universidad de Antioquia, 2010, 53: 30-41. |
59 | Zhu Y L, Chang Z H, Pang J, et al. Synthesis of zeolite 4A from Kaolin and bauxite by alkaline fusion at low temperature[J]. Materials Science Forum, 2011, 685: 298-306. |
60 | Rogers R D, Seddon K R. Ionic liquids: solvents of the future? [J]. Science, 2003, 302(5646): 792-793. |
61 | Angell C A. Ionic liquids in the temperature range 150-1500 K: patterns and problems[M]//Molten Salts and Ionic Liquids. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012: 1-24. |
62 | Tremillon B L. Acid-base effects in molten electrolytes[M]//Molten Salt Chemistry: An Introduction and Selected Applications. Boston: Reidel Publishing Company, 1987: 279-304. |
63 | Casey W H, Westrich H R, Banfield J F, et al. Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals[J]. Nature, 1993, 366(6452), 253-256. |
64 | Zhang Y, Li Z H, Qi T, et al. Green manufacturing process of chromium compounds[J]. Environmental Progress, 2005, 24(1): 44-50. |
65 | Cao S T, Zhang Y F, Zhang Y. Preparation of sodium aluminate from the leach liquor of diasporic bauxite in concentrated NaOH solution[J]. Hydrometallurgy, 2009, 98(3/4): 298-303. |
66 | 刘海燕, 孙鑫艳, 郑涛, 等. 不同活化方法对天然硅铝矿物活化及分子筛合成效果的影响[J]. 燃料化学学报, 2020, 48(3): 328-337. |
Liu H Y, Sun X Y, Zheng T, et al. Effects of activation methods on the activation of natural aluminosilicate minerals and zeolite synthesis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 328-337. | |
67 | 杨金彪. 天然硅铝矿物的拟固相活化及其在分子筛合成中的应用[D]. 北京: 中国石油大学(北京), 2017. |
Yang J B. A quasi-solid-phase approach to activate natural aluminosilicate minerals for zeolite synthesis[D]. Beijing: China University of Petroleum, 2017. | |
68 | Hu Y, Liu X, Xu Z H. Role of crystal structure in flotation separation of diaspore from kaolinite, pyrophyllite and illite[J]. Minerals Engineering, 2003, 16(3): 219-227. |
69 | Murashov V V, Demchuk E. A comparative study of unrelaxed surfaces on quartz and kaolinite, using the periodic density functional theory[J]. The Journal of Physical Chemistry. B, 2005, 109(21): 10835-10841. |
70 | Yue Y Y, Hu Y, Dong P, et al. Mesoscale depolymerization of natural rectorite mineral via a quasi-solid-phase approach for zeolite synthesis[J]. Chemical Engineering Science, 2020, 220: 115635. |
71 | 刁海菊, 天然矿物拟固相活化及A型分子筛合成的研究[D]. 北京: 中国石油大学(北京), 2017. |
Diao H J. Quasi solid-phase activation of natural aluminosilicate mineral and its application in the synthesis of zeolite A[D]. Beijing: China University of Petroleum, 2017. | |
72 | Haden W L, Dzierzanowski F J. Microspherical zeolitic molecular sieve composite catalyst and preparation thereof: US3506594[P]. 1970-04-14. |
73 | Walter L H, Frank J D. Zeolite catalyst and preparation: US3506594[P]. 1972-05-16. |
74 | Tan Q F, Bao X J, Song T C, et al. Synthesis, characterization, and catalytic properties of hydrothermally stable macro-meso-micro-porous composite materials synthesized via in situ assembly of preformed zeolite Y nanoclusters on Kaolin[J]. Journal of Catalysis, 2007, 251(1): 69-79. |
75 | Zhang L N, Liu H Y, Yue Y Y, et al. Design and in situ synthesis of hierarchical SAPO-34@kaolin composites as catalysts for methanol to olefins[J]. Catalysis Science & Technology, 2019, 9(22): 6438-6451. |
76 | Ding J J, Liu H Y, Yuan P, et al. Catalytic properties of a hierarchical zeolite synthesized from a natural aluminosilicate mineral without the use of a secondary mesoscale template[J]. ChemCatChem, 2013, 5(8): 2258-2269. |
77 | Hincapie B O, Garces L J, Zhang Q H, et al. Synthesis of mordenite nanocrystals[J]. Microporous and Mesoporous Materials, 2004, 67(1): 19-26. |
78 | Dakhchoune M, Villalobos L F, Semino R, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets[J]. Nature Materials, 2021, 20: 362–369. |
79 | Dai H, Shen Y F, Yang T M, et al. Finned zeolite catalysts[J]. Nature Materials, 2020, 19(10): 1074-1080. |
80 | Meng X J, Xiao F S. Green routes for synthesis of zeolites[J]. Chemical Reviews, 2014, 114(2): 1521-1543. |
81 | Novak S, Chaves T F, Martins L, et al. Preparation of hydrophobic MFI zeolites containing hierarchical micro-mesopores using seeds functionalized with octyltriethoxysilane[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124109. |
82 | 刘海燕, 郑涛, 鲍晓军. 一种等级孔丝光沸石的合成方法: 108793184[P]. 2020-08-18. |
Liu H Y, Zheng T, Bao X J. A synthetic method of hierarchical mordenite: 108793184[P]. 2020-08-18. | |
83 | 刘海燕, 郑涛, 刘植昌, 等. 一种晶种法合成硅铝酸盐分子筛的方法: 110526260B[P]. 2021-07-27. |
Liu H Y, Zheng T, Liu Z C, et al. Method for synthesizing aluminosilicate molecular sieve by seed crystal method: 110526260B[P]. 2021-07-27. | |
84 | Yang J B, Li T S, Bao X J, et al. Mesoporogen-free synthesis of hierarchical sodalite as a solid base catalyst from sub-molten salt-activated aluminosilicate[J]. Particuology, 2020, 48: 48-54. |
85 | Araújo R S, Azevedo D C S, Rodríguez-Castellón E, et al. Al and Ti-containing mesoporous molecular sieves: synthesis, characterization and redox activity in the anthracene oxidation[J]. Journal of Molecular Catalysis A: Chemical, 2008, 281(1/2): 154-163. |
86 | Zhou Y, Zhang J L, Wang L, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving[J]. Science, 2021, 373(6552): 315-320. |
87 | Sazama P, Sathu N K, Tabor E, et al. Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition[J]. Journal of Catalysis, 2013, 299: 188-203. |
88 | Koekkoek A J, Kim W, Degirmenci V, et al. Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide[J]. Journal of Catalysis, 2013, 299: 81-89. |
89 | Rankel L A, Valyocsik E W. Process for the preparation of ZSM-5 utilizing transition metal complexes during crystallization: US4388285[P]. 1983-06-14. |
90 | Guo D D, Shen B J, Qi G D, et al. Unstable-Fe-site-induced formation of mesopores in microporous zeolite Y without using organic templates[J]. Chemical Communications (Cambridge, England), 2014, 50(20): 2660-2663. |
91 | Pérez-Ramírez J, Mul G, Kapteijn F, et al. Physicochemical characterization of isomorphously substituted FeZSM-5 during activation[J]. Journal of Catalysis, 2002, 207(1): 113-126. |
92 | Liu H Y, Yue Y Y, Shen T, et al. Transformation and crystallization behaviors of titanium species in synthesizing Ti-ZSM-5 zeolites from natural rectorite mineral[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11861-11870. |
93 | Li N, Li T S, Liu H Y, et al. A novel approach to synthesize in situ crystallized zeolite/Kaolin composites with high zeolite content[J]. Applied Clay Science, 2017, 144: 150-156. |
[1] | Tianqi TANG, Yurong HE. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed [J]. CIESC Journal, 2022, 73(6): 2636-2648. |
[2] | Quan CHEN, Zexi ZHENG, Ran LI, Qicheng SUN, Hui YANG. Measurement of granular temperature during silo flow by speckle visibility spectroscopy [J]. CIESC Journal, 2022, 73(6): 2603-2611. |
[3] | Limin WANG, Shuyu GUO, Xing XIANG, Shaotong FU. Research progress of energy-minimization multi-scale method for turbulent system [J]. CIESC Journal, 2022, 73(6): 2415-2426. |
[4] | Ke XU, Guoqiang SHI, Dongfeng XUE. Inorganic hybrid perovskite cluster materials: luminescence properties of mesoscale perovskite materials [J]. CIESC Journal, 2022, 73(6): 2748-2756. |
[5] | Bo MENG, Yanping LIU, Xinke JIANG, Yifan HAN. The scale regulation of Fe5C2-MnO x and their catalytic performance for the preparation of olefins from syngas [J]. CIESC Journal, 2022, 73(6): 2677-2689. |
[6] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[7] | Tienan LI, Bidan ZHAO, Peng ZHAO, Yongmin ZHANG, Junwu WANG. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed [J]. CIESC Journal, 2022, 73(6): 2649-2661. |
[8] | Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction [J]. CIESC Journal, 2022, 73(6): 2669-2676. |
[9] | Yanran ZHU, Liang GE, Xingya LI, Tongwen XU. Construction and application of three-phase ionic exchange membranes [J]. CIESC Journal, 2022, 73(6): 2397-2414. |
[10] | Ming JIANG, Qiang ZHOU. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2468-2485. |
[11] | Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems [J]. CIESC Journal, 2022, 73(6): 2514-2528. |
[12] | Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization [J]. CIESC Journal, 2022, 73(6): 2486-2495. |
[13] | Chan WANG, Guoxi XIAO, Xiaoxue GUO, Renwei XU, Yuanyuan YUE, Xiaojun BAO. Green synthesis and application of Beta zeolite prepared via mesoscale depolymerization-reorganization strategy [J]. CIESC Journal, 2022, 73(6): 2690-2697. |
[14] | Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Liquid-liquid two-phase flow and mesoscale effect in parallel microchannels [J]. CIESC Journal, 2022, 73(6): 2563-2572. |
[15] | Yongli MA, Mingyan LIU, Zongding HU. Development of flow mesoscale modeling of the gas-liquid-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2438-2451. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 220
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 706
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||