1 |
Mukhopadhyay A, Basu S, Singha S, et al. Inner-view of nanomaterial incited protein conformational changes: insights into designable interaction[J]. Research, 2018, 2018: 1-15.
|
2 |
Libbrecht K G. Physical dynamics of ice crystal growth[J]. Annual Review of Materials Research, 2017, 47(1): 271-295.
|
3 |
Brumberg A, Hammonds K, Baker I, et al. Single-crystal Ih ice surfaces unveil connection between macroscopic and molecular structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(21): 5349-5354.
|
4 |
Tsai J W. Studies in molecular dynamics[D]. San Francisco: Stanford University.1997.
|
5 |
Rahman A, Stillinger F H. Molecular dynamics study of liquid water[J]. The Journal of Chemical Physics, 1971, 55(7): 3336-3359.
|
6 |
Gao Q W, Zhang Y M, Xu S T, et al. Physicochemical properties and structure of fluid at nano-/micro-interface: progress in simulation and experimental study[J]. Green Energy & Environment, 2020, 5(3): 274-285.
|
7 |
Joselevich E. Self-organized growth of complex nanotube patterns on crystal surfaces[J]. Nano Research, 2009, 2(10): 743-754.
|
8 |
Libbrecht K. Growth rates of the principal facets of ice between -10℃ and -40℃[J]. Journal of Crystal Growth, 2003, 247(3/4): 530-540.
|
9 |
Karim O A, Haymet A D J. The ice/water interface[J]. Chemical Physics Letters, 1987, 138(6): 531-534.
|
10 |
Báez L A, Clancy P. Existence of a density maximum in extended simple point charge water[J]. The Journal of Chemical Physics, 1994, 101(11): 9837-9840.
|
11 |
Hayward J A, Haymet A D J. The ice/water interface: orientational order parameters for the basal, prism, { 20 2 ¯ 1 } , and { 2 1 ¯ 1 ¯ 0 } interfaces of ice Ih[J]. Physical Chemistry Chemical Physics, 2002, 4(15): 3712-3719.
|
12 |
Jorgensen W L, Madura J D. Temperature and size dependence for Monte Carlo simulations of TIP4P water[J]. Molecular Physics, 1985, 56(6): 1381-1392.
|
13 |
Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983, 79(2): 926-935.
|
14 |
Svishchev I M, Kusalik P G. Crystallization of liquid water in a molecular dynamics simulation[J]. Physical Review Letters, 1994, 73(7): 975-978.
|
15 |
Wang J, Tang Y W, Zeng X C. Solid-liquid interfacial free energy of water: a molecular dynamics simulation study[J]. Journal of Chemical Theory and Computation, 2007, 3(4): 1494-1498.
|
16 |
Chung Y J, Rick S W. The effects of charge transfer interactions on the properties of ice I h [J]. Journal of Statistical Physics, 2011, 145(2): 355-364.
|
17 |
Louden P B, Gezelter J D. Friction at ice-I h /water interfaces is governed by solid/liquid hydrogen-bonding[J]. The Journal of Physical Chemistry C, 2017, 121(48): 26764-26776.
|
18 |
Ramírez B V, Benito R M, Torres-Arenas J, et al. Water phase transitions from the perspective of hydrogen-bond network analysis[J]. Physical Chemistry Chemical Physics, 2018, 20(44): 28308-28318.
|
19 |
Bryk T, Haymet A D J. Ice 1h/water interface of the SPC/E model: molecular dynamics simulations of the equilibrium basal and prism interfaces[J]. The Journal of Chemical Physics, 2002, 117(22): 10258-10268.
|
20 |
Tadmor E B, Miller R E. Modeling Materials[M]. Cambridge: Cambridge University Press, 2009.
|
21 |
Xu J, Wang X W, He X F, et al. Application of the Mole-8.5 supercomputer: probing the whole influenza virion at the atomic level[J]. Chinese Science Bulletin, 2011, 56(20): 2114-2118.
|
22 |
Ayubian S, Alawneh S, Richard M, et al. Implementation and performance of a GPU-based Monte-Carlo framework for determining design ice load[C]//2017 International Conference on High Performance Computing & Simulation (HPCS). Genoa, Italy:IEEE, 2017: 109-116.
|
23 |
Berendsen H J C, Grigera J R, Straatsma T P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry, 1987, 91(24): 6269-6271.
|
24 |
Vega C, Sanz E, Abascal J L F. The melting temperature of the most common models of water[J]. The Journal of Chemical Physics, 2005, 122(11): 114507.
|
25 |
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
|
26 |
Steinhardt P J, Nelson D R, Ronchetti M. Bond-orientational order in liquids and glasses[J]. Physical Review B, 1983, 28(2): 784-805.
|
27 |
Arunan E, Desiraju G R, Klein R A, et al. Defining the hydrogen bond: an account (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83(8): 1619-1636.
|
28 |
Cuthbertson M J, Poole P H. Mixturelike behavior near a liquid-liquid phase transition in simulations of supercooled water[J]. Physical Review Letters, 2011, 106(11): 115706.
|
29 |
Sanz E, Vega C, Espinosa J R, et al. Homogeneous ice nucleation at moderate supercooling from molecular simulation[J]. Journal of the American Chemical Society, 2013, 135(40): 15008-15017.
|
30 |
Errington J R, Debenedetti P G. Relationship between structural order and the anomalies of liquid water[J]. Nature, 2001, 409(6818): 318-321.
|
31 |
Tang F J, Ohto T, Sun S M, et al. Molecular structure and modeling of water-air and ice-air interfaces monitored by sum-frequency generation[J]. Chemical Reviews, 2020, 120(8): 3633-3667.
|
32 |
Vega C, McBride C, Sanz E, et al. Radial distribution functions and densities for the SPC/E, TIP4P and TIP5P models for liquid water and ices I h, I c, II, III, IV, V, VI, VII, VIII, IX, XI and XII[J]. Physical Chemistry Chemical Physics, 2005, 7(7): 1450-1456.
|
33 |
Sánchez M A, Kling T, Ishiyama T, et al. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice[J]. PNAS, 2017, 114(2): 227-232.
|