CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1472-1482.DOI: 10.11949/0438-1157.20211624
• Thermodynamics • Previous Articles Next Articles
Wenxin MEN(),Qingshou PENG,Xia GUI()
Received:
2021-11-12
Revised:
2021-12-18
Online:
2022-04-25
Published:
2022-04-05
Contact:
Xia GUI
通讯作者:
桂霞
作者简介:
门文欣(1995—),女,硕士研究生,基金资助:
CLC Number:
Wenxin MEN, Qingshou PENG, Xia GUI. Phase equilibrium of CO2 hydrate in the presence of four different quaternary ammonium salts[J]. CIESC Journal, 2022, 73(4): 1472-1482.
门文欣, 彭庆收, 桂霞. 不同季铵盐作用下的CO2水合物相平衡[J]. 化工学报, 2022, 73(4): 1472-1482.
Add to citation manager EndNote|Ris|BibTeX
试剂 | 分子式 | 纯度 | 供应商 |
---|---|---|---|
四丁基氟化铵(TBAF) | C??H??FN | 0.98 | 上海阿拉丁试剂晶纯实业有限公司 |
四丁基氯化铵(TBAC) | C??H??ClN | 0.99 | 上海阿拉丁试剂晶纯实业有限公司 |
四丁基溴化铵(TBAB) | C??H??BrN | 0.99 | 上海阿拉丁试剂晶纯实业有限公司 |
苄基三乙基氯化铵(TEBAC) | C13H22ClN | 0.99 | 上海阿拉丁试剂晶纯实业有限公司 |
去离子水 | H2O | — | 实验室自制 |
Table 1 Experimental reagents
试剂 | 分子式 | 纯度 | 供应商 |
---|---|---|---|
四丁基氟化铵(TBAF) | C??H??FN | 0.98 | 上海阿拉丁试剂晶纯实业有限公司 |
四丁基氯化铵(TBAC) | C??H??ClN | 0.99 | 上海阿拉丁试剂晶纯实业有限公司 |
四丁基溴化铵(TBAB) | C??H??BrN | 0.99 | 上海阿拉丁试剂晶纯实业有限公司 |
苄基三乙基氯化铵(TEBAC) | C13H22ClN | 0.99 | 上海阿拉丁试剂晶纯实业有限公司 |
去离子水 | H2O | — | 实验室自制 |
促进剂 | 5%(质量) | 7%(质量) | 10%(质量) | 12%(质量) | 15%(质量) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ted/K | Ped/MPa | ΔTave/K | Ted/K | Ped/MPa | ΔTave/K | Ted/K | Ped/MPa | ΔTave/K | Ted/K | Ped/MPa | ΔTave/K | Ted/K | Ped/MPa | ΔTave/K | |
TBAF | 284.25 | 0.44 | 11.00 | 285.35 | 0.65 | 11.65 | 286.35 | 0.86 | 12.95 | 286.85 | 0.8 | 13.40 | 287.35 | 0.74 | 13.65 |
287.55 | 1.34 | 287.95 | 1.38 | 288.25 | 1.41 | 289.05 | 1.38 | 289.75 | 1.35 | ||||||
288.75 | 1.95 | 289.05 | 1.92 | 289.35 | 1.9 | 290.35 | 1.98 | 291.35 | 2.06 | ||||||
289.45 | 2.46 | 289.85 | 2.46 | 290.25 | 2.46 | 291.25 | 2.56 | 292.25 | 2.63 | ||||||
289.85 | 2.76 | 290.55 | 2.92 | 291.25 | 3.03 | 292.85 | 3.35 | 294.35 | 3.68 | ||||||
290.75 | 3.45 | 291.45 | 3.51 | 292.15 | 3.57 | 293.35 | 3.67 | ||||||||
TBAC | 273.35 | 0.78 | 2.20 | 277.85 | 0.92 | 4.35 | 281.75 | 1.07 | 6.95 | 281.35 | 0.71 | 7.85 | 280.95 | 0.35 | 8.15 |
276.65 | 1.29 | 280.05 | 1.38 | 282.85 | 1.46 | 282.95 | 1.06 | 282.95 | 0.65 | ||||||
278.65 | 1.75 | 281.45 | 1.8 | 283.65 | 1.86 | 283.85 | 1.43 | 284.05 | 1.01 | ||||||
280.55 | 2.12 | 283.05 | 2.29 | 284.85 | 2.46 | 285.15 | 2.12 | 285.45 | 1.74 | ||||||
281.75 | 2.48 | 284.15 | 2.87 | 285.65 | 3.25 | 286.15 | 2.88 | 286.65 | 2.51 | ||||||
282.75 | 2.91 | 285.05 | 3.41 | 286.75 | 3.91 | 287.15 | 3.58 | 287.45 | 3.25 | ||||||
283.65 | 3.36 | 286.15 | 3.97 | 288.05 | 4.28 | 288.65 | 4.19 | ||||||||
TBAB | 279.45 | 0.42 | 6.35 | 281.05 | 0.57 | 7.45 | 282.05 | 0.36 | 9.60 | 283.55 | 0.43 | 9.85 | 283.05 | 0.49 | 10.30 |
281.45 | 0.71 | 282.45 | 0.81 | 284.85 | 0.84 | 284.65 | 0.66 | 284.45 | 0.86 | ||||||
282.75 | 1.31 | 284.45 | 1.31 | 285.35 | 1.03 | 285.55 | 0.98 | 285.75 | 1.16 | ||||||
284.05 | 1.73 | 285.65 | 1.62 | 286.45 | 1.52 | 286.55 | 1.42 | 286.65 | 1.52 | ||||||
284.45 | 1.98 | 286.55 | 2.36 | 287.05 | 2.03 | 287.45 | 2.07 | 287.75 | 2.12 | ||||||
285.45 | 2.45 | 287.15 | 2.67 | 287.65 | 2.61 | 288.15 | 2.62 | 288.35 | 2.53 | ||||||
286.05 | 2.91 | 287.55 | 3.08 | 288.35 | 3.25 | 288.75 | 3.23 | 289.05 | 3.12 | ||||||
286.75 | 3.57 | 287.95 | 3.54 | 288.85 | 3.87 | 289.15 | 3.7 | 289.45 | 3.53 | ||||||
287.05 | 4.07 | 288.25 | 3.82 | 289.45 | 4.32 | 289.55 | 4.22 | 289.85 | 4.12 | ||||||
287.25 | 4.23 | 288.75 | 4.36 | ||||||||||||
TEBAC | 272.75 | 1.13 | 0.25 | 273.85 | 1.23 | 0.55 | 274.95 | 1.33 | 0.75 | 274.25 | 1.22 | 0.95 | 273.45 | 1.07 | 1.15 |
276.25 | 1.75 | 276.45 | 1.74 | 276.65 | 1.73 | 276.15 | 1.65 | 275.65 | 1.57 | ||||||
278.35 | 2.24 | 278.45 | 2.14 | 278.45 | 2.04 | 278.25 | 1.98 | 278.05 | 1.92 | ||||||
279.45 | 2.75 | 279.95 | 2.68 | 280.35 | 2.62 | 280.25 | 2.48 | 279.65 | 2.34 | ||||||
280.65 | 3.09 | 281.05 | 3.02 | 281.35 | 2.95 | 281.35 | 2.91 | 281.45 | 2.86 | ||||||
281.75 | 3.65 | 281.75 | 3.46 | 281.75 | 3.26 | 282.25 | 3.3 | 282.75 | 3.34 | ||||||
282.85 | 4.03 | 283.25 | 3.93 | 283.55 | 3.83 | 283.75 | 3.79 | 283.85 | 3.74 | ||||||
285.35 | 4.26 |
Table 2 Phase equilibrium condition of CO2 hydrate under additive action
促进剂 | 5%(质量) | 7%(质量) | 10%(质量) | 12%(质量) | 15%(质量) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ted/K | Ped/MPa | ΔTave/K | Ted/K | Ped/MPa | ΔTave/K | Ted/K | Ped/MPa | ΔTave/K | Ted/K | Ped/MPa | ΔTave/K | Ted/K | Ped/MPa | ΔTave/K | |
TBAF | 284.25 | 0.44 | 11.00 | 285.35 | 0.65 | 11.65 | 286.35 | 0.86 | 12.95 | 286.85 | 0.8 | 13.40 | 287.35 | 0.74 | 13.65 |
287.55 | 1.34 | 287.95 | 1.38 | 288.25 | 1.41 | 289.05 | 1.38 | 289.75 | 1.35 | ||||||
288.75 | 1.95 | 289.05 | 1.92 | 289.35 | 1.9 | 290.35 | 1.98 | 291.35 | 2.06 | ||||||
289.45 | 2.46 | 289.85 | 2.46 | 290.25 | 2.46 | 291.25 | 2.56 | 292.25 | 2.63 | ||||||
289.85 | 2.76 | 290.55 | 2.92 | 291.25 | 3.03 | 292.85 | 3.35 | 294.35 | 3.68 | ||||||
290.75 | 3.45 | 291.45 | 3.51 | 292.15 | 3.57 | 293.35 | 3.67 | ||||||||
TBAC | 273.35 | 0.78 | 2.20 | 277.85 | 0.92 | 4.35 | 281.75 | 1.07 | 6.95 | 281.35 | 0.71 | 7.85 | 280.95 | 0.35 | 8.15 |
276.65 | 1.29 | 280.05 | 1.38 | 282.85 | 1.46 | 282.95 | 1.06 | 282.95 | 0.65 | ||||||
278.65 | 1.75 | 281.45 | 1.8 | 283.65 | 1.86 | 283.85 | 1.43 | 284.05 | 1.01 | ||||||
280.55 | 2.12 | 283.05 | 2.29 | 284.85 | 2.46 | 285.15 | 2.12 | 285.45 | 1.74 | ||||||
281.75 | 2.48 | 284.15 | 2.87 | 285.65 | 3.25 | 286.15 | 2.88 | 286.65 | 2.51 | ||||||
282.75 | 2.91 | 285.05 | 3.41 | 286.75 | 3.91 | 287.15 | 3.58 | 287.45 | 3.25 | ||||||
283.65 | 3.36 | 286.15 | 3.97 | 288.05 | 4.28 | 288.65 | 4.19 | ||||||||
TBAB | 279.45 | 0.42 | 6.35 | 281.05 | 0.57 | 7.45 | 282.05 | 0.36 | 9.60 | 283.55 | 0.43 | 9.85 | 283.05 | 0.49 | 10.30 |
281.45 | 0.71 | 282.45 | 0.81 | 284.85 | 0.84 | 284.65 | 0.66 | 284.45 | 0.86 | ||||||
282.75 | 1.31 | 284.45 | 1.31 | 285.35 | 1.03 | 285.55 | 0.98 | 285.75 | 1.16 | ||||||
284.05 | 1.73 | 285.65 | 1.62 | 286.45 | 1.52 | 286.55 | 1.42 | 286.65 | 1.52 | ||||||
284.45 | 1.98 | 286.55 | 2.36 | 287.05 | 2.03 | 287.45 | 2.07 | 287.75 | 2.12 | ||||||
285.45 | 2.45 | 287.15 | 2.67 | 287.65 | 2.61 | 288.15 | 2.62 | 288.35 | 2.53 | ||||||
286.05 | 2.91 | 287.55 | 3.08 | 288.35 | 3.25 | 288.75 | 3.23 | 289.05 | 3.12 | ||||||
286.75 | 3.57 | 287.95 | 3.54 | 288.85 | 3.87 | 289.15 | 3.7 | 289.45 | 3.53 | ||||||
287.05 | 4.07 | 288.25 | 3.82 | 289.45 | 4.32 | 289.55 | 4.22 | 289.85 | 4.12 | ||||||
287.25 | 4.23 | 288.75 | 4.36 | ||||||||||||
TEBAC | 272.75 | 1.13 | 0.25 | 273.85 | 1.23 | 0.55 | 274.95 | 1.33 | 0.75 | 274.25 | 1.22 | 0.95 | 273.45 | 1.07 | 1.15 |
276.25 | 1.75 | 276.45 | 1.74 | 276.65 | 1.73 | 276.15 | 1.65 | 275.65 | 1.57 | ||||||
278.35 | 2.24 | 278.45 | 2.14 | 278.45 | 2.04 | 278.25 | 1.98 | 278.05 | 1.92 | ||||||
279.45 | 2.75 | 279.95 | 2.68 | 280.35 | 2.62 | 280.25 | 2.48 | 279.65 | 2.34 | ||||||
280.65 | 3.09 | 281.05 | 3.02 | 281.35 | 2.95 | 281.35 | 2.91 | 281.45 | 2.86 | ||||||
281.75 | 3.65 | 281.75 | 3.46 | 281.75 | 3.26 | 282.25 | 3.3 | 282.75 | 3.34 | ||||||
282.85 | 4.03 | 283.25 | 3.93 | 283.55 | 3.83 | 283.75 | 3.79 | 283.85 | 3.74 | ||||||
285.35 | 4.26 |
促进剂 | 质量分数/% | Aslope | ΔHd /(kJ·mol-1) | R2 |
---|---|---|---|---|
TBAF | 5 | -23641 | 163.51 | 0.9937 |
7 | -23457 | 167.52 | 0.9975 | |
10 | -28785 | 205.49 | 0.9944 | |
12 | -23947 | 171.12 | 0.9927 | |
15 | -24775 | 175.54 | 0.9972 | |
TBAC | 5 | -10925 | 74.75 | 0.9930 |
7 | -20674 | 126.89 | 0.9948 | |
10 | -21348 | 147.98 | 0.9946 | |
12 | -22486 | 156.40 | 0.9959 | |
15 | -27154 | 194.80 | 0.9951 | |
TBAB | 5 | -26843 | 198.50 | 0.9985 |
7 | -25296 | 181.37 | 0.9923 | |
10 | -24526 | 178.82 | 0.9961 | |
12 | -23530 | 174.14 | 0.9982 | |
15 | -23850 | 172.88 | 0.9910 | |
TEBAC | 5 | -8882.8 | 59.05 | 0.9942 |
7 | -9704.5 | 64.49 | 0.9973 | |
10 | -9588.2 | 63.06 | 0.9952 | |
12 | -9162.1 | 61.96 | 0.9956 | |
15 | -9904.5 | 65.37 | 0.9973 |
Table 3 Dissociation enthalpies of CO2 salt hydrate under quaternary ammonium action
促进剂 | 质量分数/% | Aslope | ΔHd /(kJ·mol-1) | R2 |
---|---|---|---|---|
TBAF | 5 | -23641 | 163.51 | 0.9937 |
7 | -23457 | 167.52 | 0.9975 | |
10 | -28785 | 205.49 | 0.9944 | |
12 | -23947 | 171.12 | 0.9927 | |
15 | -24775 | 175.54 | 0.9972 | |
TBAC | 5 | -10925 | 74.75 | 0.9930 |
7 | -20674 | 126.89 | 0.9948 | |
10 | -21348 | 147.98 | 0.9946 | |
12 | -22486 | 156.40 | 0.9959 | |
15 | -27154 | 194.80 | 0.9951 | |
TBAB | 5 | -26843 | 198.50 | 0.9985 |
7 | -25296 | 181.37 | 0.9923 | |
10 | -24526 | 178.82 | 0.9961 | |
12 | -23530 | 174.14 | 0.9982 | |
15 | -23850 | 172.88 | 0.9910 | |
TEBAC | 5 | -8882.8 | 59.05 | 0.9942 |
7 | -9704.5 | 64.49 | 0.9973 | |
10 | -9588.2 | 63.06 | 0.9952 | |
12 | -9162.1 | 61.96 | 0.9956 | |
15 | -9904.5 | 65.37 | 0.9973 |
促进剂 | 质量分数/% | K1 | K2 |
---|---|---|---|
TBAF | 5 | -2.219 | -653 |
10 | -1.445 | -431.4 | |
15 | -1.299 | -393.2 | |
TBAC | 5 | -0.2616 | -74.94 |
10 | -1.512 | -435.9 | |
15 | -2.313 | -670.8 | |
TBAB | 5 | -1.868 | -539 |
10 | -2.472 | -719.9 | |
15 | -1.968 | -576.4 | |
TEBAC | 5 | -0.108 | -28.48 |
10 | -0.05776 | -15.57 | |
15 | 0.03457 | 9.756 |
Table 4 Values of fitting parameters K1 and K2
促进剂 | 质量分数/% | K1 | K2 |
---|---|---|---|
TBAF | 5 | -2.219 | -653 |
10 | -1.445 | -431.4 | |
15 | -1.299 | -393.2 | |
TBAC | 5 | -0.2616 | -74.94 |
10 | -1.512 | -435.9 | |
15 | -2.313 | -670.8 | |
TBAB | 5 | -1.868 | -539 |
10 | -2.472 | -719.9 | |
15 | -1.968 | -576.4 | |
TEBAC | 5 | -0.108 | -28.48 |
10 | -0.05776 | -15.57 | |
15 | 0.03457 | 9.756 |
1 | Roadmap for carbon capture and storage demonstration and deployment in the People's Republic of China[R]. ADB Reports, 2015. |
2 | Aminu M D, Nabavi S A, Rochelle C A, et al. A review of developments in carbon dioxide storage[J]. Applied Energy, 2017, 208: 1389-1419. |
3 | Raza A, Gholami R. Introduction to carbon dioxide capture and storage[M]//Sustainable Agriculture Reviews. Cham: Springer International Publishing, 2019: 1-11. |
4 | Rochelle C A, Camps A P, Long D, et al. Can CO2 hydrate assist in the underground storage of carbon dioxide? [J]. Geological Society, London, Special Publications, 2009, 319(1): 171-183. |
5 | Burnol A, Thinon I, Ruffine L, et al. Influence of impurities (nitrogen and methane) on the CO2 storage capacity as sediment-hosted gas hydrates — application in the area of the Celtic Sea and the Bay of Biscay[J]. International Journal of Greenhouse Gas Control, 2015, 35: 96-109. |
6 | Rossi F, Gambelli A M. Thermodynamic phase equilibrium of single-guest hydrate and formation data of hydrate in presence of chemical additives: a review[J]. Fluid Phase Equilibria, 2021, 536: 112958. |
7 | Yang M J, Jing W, Wang P F, et al. Effects of an additive mixture (THF + TBAB) on CO2 hydrate phase equilibrium[J]. Fluid Phase Equilibria, 2015, 401: 27-33. |
8 | Sun Z G, Jiao L J, Zhao Z G, et al. Phase equilibrium conditions of semi-calthrate hydrates of (tetra-n-butyl ammonium chloride + carbon dioxide)[J]. The Journal of Chemical Thermodynamics, 2014, 75: 116-118. |
9 | Mohammadi A, Manteghian M, Mohammadi A H. Phase equilibria of semiclathrate hydrates for methane + tetra-n-butylammonium chloride (TBAC), carbon dioxide + TBAC, and nitrogen + TBAC aqueous solution systems[J]. Fluid Phase Equilibria, 2014, 381: 102-107. |
10 | Wang X L, Dennis M. Phase equilibrium and formation behavior of the CO2-TBPB semiclathrate hydrate for cold storage applications[J]. Journal of Chemical & Engineering Data, 2017, 62(3): 1083-1093. |
11 | Mayoufi N, Dalmazzone D, Delahaye A, et al. Experimental data on phase behavior of simple tetrabutylphosphonium bromide (TBPB) and mixed CO2 + TBPB semiclathrate hydrates[J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2987-2993. |
12 | Wang Y, Zhong D L, Englezos P, et al. Kinetic study of semiclathrate hydrates formed with CO2 in the presence of tetra-n-butyl ammonium bromide and tetra-n-butyl phosphonium bromide[J]. Energy, 2020, 212: 118697. |
13 | Ye N, Zhang P. Equilibrium data and morphology of tetra-n-butyl ammonium bromide semiclathrate hydrate with carbon dioxide[J]. Journal of Chemical & Engineering Data, 2012, 57(5): 1557-1562. |
14 | Fan S S, Long X J, Lang X M, et al. CO2 capture from CH4/CO2 mixture gas with tetra-n-butylammonium bromide semi-clathrate hydrate through a pressure recovery method[J]. Energy & Fuels, 2016, 30(10): 8529-8534. |
15 | Chima-Maceda J, Esquivel-Mora P, Pimentel-Rodas A, et al. Effect of 1-propanol and TBAB on gas hydrates dissociation conditions for CO2 + hexane + water systems[J]. Journal of Chemical & Engineering Data, 2019, 64(11): 4775-4780. |
16 | Shimada M, Shimada J, Sugahara T, et al. Phase equilibrium relations for tetra-n-butylphosphonium acetate semiclathrate hydrate systems in the presence of methane, carbon dioxide, nitrogen, or ethane[J]. Fluid Phase Equilibria, 2019, 488: 48-53. |
17 | Nesterov A N, Reshetnikov A M. New combination of thermodynamic and kinetic promoters to enhance carbon dioxide hydrate formation under static conditions[J]. Chemical Engineering Journal, 2019, 378: 122165. |
18 | Zhang F Y, Wang X L, Lou X, et al. The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications[J]. Energy, 2021, 227: 120424. |
19 | Li S F, Fan S S, Wang J Q, et al. Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride)[J]. Journal of Chemical & Engineering Data, 2010, 55(9): 3212-3215. |
20 | Schroeter J P, Kobayashi R, Hildebrand M A. Hydrate decomposition conditions in the system hydrogen sulfide-methane-propane[J]. Industrial & Engineering Chemistry Fundamentals, 1983, 22(4): 361-364. |
21 | Ward Z T, Marriott R A, Sum A K, et al. Equilibrium data of gas hydrates containing methane, propane, and hydrogen sulfide[J]. Journal of Chemical & Engineering Data, 2015, 60(2): 424-428. |
22 | 张庆东, 李玉星, 王武昌. 化学添加剂对水合物生成和储气的影响[J]. 石油与天然气化工, 2014, 43(2): 146-151. |
Zhang Q D, Li Y X, Wang W C. Influence of chemical additives on hydrate formation and gas storage[J]. Chemical Engineering of Oil & Gas, 2014, 43(2): 146-151. | |
23 | Kvamme B, Aromada S A. Alternative routes to hydrate formation during processing and transport of natural gas with a significant amount of CO2: sleipner gas as a case study[J]. Journal of Chemical & Engineering Data, 2018, 63(3): 832-844. |
24 | Jacobson L C, Hujo W, Molinero V. Amorphous precursors in the nucleation of clathrate hydrates[J]. Journal of the American Chemical Society, 2010, 132(33): 11806-11811. |
25 | Mu L, Cui Q Y. Experimental study on the dissociation equilibrium of (CH4 + CO2 + N2) hydrates in the mixed sediments[J]. Journal of Chemical & Engineering Data, 2019, 64(12): 5806-5813. |
26 | Kang S P, Lee H, Ryu B J. Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide + nitrogen), and (carbon dioxide + nitrogen + tetrahydrofuran)[J]. The Journal of Chemical Thermodynamics, 2001, 33(5): 513-521. |
27 | Maekawa T. Equilibrium conditions for clathrate hydrates formed from carbon dioxide or ethane in the presence of aqueous solutions of 1, 4-dioxane and 1, 3-dioxolane[J]. Fluid Phase Equilibria, 2014, 384: 95-99. |
28 | Delahaye A, Fournaison L, Marinhas S, et al. Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 391-397. |
29 | Skovborg P, Rasmussen P. Comments on: hydrate dissociation enthalpy and guest size[J]. Fluid Phase Equilibria, 1994, 96: 223-231. |
30 | Wilding W V, Rowley R L, Oscarson J L. DIPPR® Project 801 evaluated process design data[J]. Fluid Phase Equilibria, 1998, 150/151: 413-420. |
31 | Sa J H, Hu Y, Sum A K. Assessing thermodynamic consistency of gas hydrates phase equilibrium data for inhibited systems[J]. Fluid Phase Equilibria, 2018, 473: 294-299. |
32 |
Robinson D B, Metha B R. Hydrates in the propane-carbon dioxide— water system[J]. Journal of Canadian Petroleum Technology, 1971, 10(1). DOI:10.2118/71-01-04 .
DOI |
33 | Adisasmito S, R J Ⅲ Frank, Sloan E D Jr. Hydrates of carbon dioxide and methane mixtures[J]. Journal of Chemical & Engineering Data, 1991, 36(1): 68-71. |
34 | Lee S, Park S, Lee Y, et al. Guest gas enclathration in semiclathrates of tetra-n-butylammonium bromide: stability condition and spectroscopic analysis[J]. Langmuir, 2011, 27(17): 10597-10603. |
35 | Chen G J, Guo T M. A new approach to gas hydrate modelling[J]. Chemical Engineering Journal, 1998, 71(2): 145-151. |
36 | Datta D. Chemical Engineering Thermodynamics[M]. Scholars' Press, 2015. |
37 | Joshi A, Mekala P, Sangwai J S. Modeling phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of tetra-n-butyl ammonium bromide[J]. Journal of Natural Gas Chemistry, 2012, 21(4): 459-465. |
38 | Parrish W R, Prausnitz J M. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Industrial & Engineering Chemistry Process Design and Development, 1972, 11(1): 26-35. |
39 | 李思广, 李彦军, 杨龙滨, 等. 基于不同状态方程预测气体水合物相平衡条件[J]. 化工学报, 2018, 69: 8-14. |
Li S G, Li Y J, Yang L B, et al. Prediction of phase equilibrium of gas hydrates based on different equations of state[J]. CIESC Journal, 2018, 69: 8-14. | |
40 | Greenspan L. Humidity fixed points of binary saturated aqueous solutions[J]. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 1977, 81A(1): 89. |
41 | Zhao W L, Yang C, Wang R R. Phase equilibria prediction model for semiclathrate hydrates formed from CH4, CO2, and N2 in the presence of tetra-n-butyl ammonium bromide[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(5): 621-627. |
[1] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[2] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[3] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[4] | Zhangning CUI, Zixuan HU, Lei WU, Jun ZHOU, Gan YE, Tiantian LIU, Qiuli ZHANG, Yonghui SONG. Research progress on the water resistance of degradable cellulose-based materials [J]. CIESC Journal, 2023, 74(6): 2296-2307. |
[5] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[6] | Zhen LONG, Jinhang WANG, Yong HE, Deqing LIANG. Characteristics study on hydrates formation from gas mixture under ionic liquid together with kinetic hydrate inhibitors [J]. CIESC Journal, 2023, 74(4): 1703-1711. |
[7] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
[8] | Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754. |
[9] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[10] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[11] | Jingbo GAO, Qiang SUN, Qing LI, Yiwei WANG, Xuqiang GUO. Hydrate equilibrium model of hydrogen-containing gas considering hydrates structure transformation [J]. CIESC Journal, 2023, 74(2): 666-673. |
[12] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[13] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[14] | Xuan ZHOU, Mengya LI, Jie SUN, Zhenkai CEN, Qiangsan LYU, Lishan ZHOU, Haitao WANG, Dandan HAN, Junbo GONG. The regulation mechanism of additives on the amino acid crystal growth [J]. CIESC Journal, 2023, 74(2): 500-510. |
[15] | Jin CAI, Xiaohui WANG, Han TANG, Guangjin CHEN, Changyu SUN. Prediction of the phase equilibrium of semi-clathrate hydrate in TBAB aqueous solution [J]. CIESC Journal, 2023, 74(1): 408-415. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||